конечным набором вычислительных правил. Это вполне возможно, и именно так и обстоит дело со стандартными формальными системами, которые применяются в математических доказательствах, — одной из таких систем является, например, знаменитая «формальная система Цермело—Френкеля» ZF, описывающая традиционную теорию множеств.
15
Пояснение к используемым здесь обозначениям можно найти в §2.8. Впрочем,
16
Источник цитаты мне, к сожалению, обнаружить не удалось. Однако, как справедливо заметил Рихард Иожа, точная формулировка слов Фейнмана не имеет никакого значения, поскольку послание, которое они несут, применимо и к ним самим!
17
Как и ранее, обозначение
18
Это означает, что при кодировании машины Тьюринга каждую последовательность … 110011… можно заменить на …11011… . В спецификации универсальной машины Тьюринга, описанной в НРК (см. примечание 7 после главы 2), имеется пятнадцать мест, где я этого не сделал. Чрезвычайно досадная оплошность с моей стороны, и это после того, как я приложил столько усилий, чтобы добиться (в рамках моих же собственных правил) по возможности наименьшего номера, определяющего эту универсальную машину. Упомянутая простая замена позволяет уменьшить мой номер более чем в 30 000 раз! Я благодарен Стивену Ганхаусу за то, что он указал мне на этот недосмотр, а также за то, что он самостоятельно проверил всю представленную в НРК спецификацию и подтвердил, что она
19
Более того, сам Тьюринг первоначально предполагал вообще
20
Одним из достаточно тривиальных «подходов», с помощью которых можно осуществить упомянутое переформулирование, является следующий: нужно просто принять за набор правил действия требуемой системы последовательность операций машины Тьюринга, корректно реализующей алгоритм
21
Эвристический принцип такого рода может принять форму гипотезы — в качестве примера укажем весьма значительную гипотезу Таиямы (обобщенную позднее в так называемую «философскую теорию Лэнгленда»), в виде следствия из которой можно представить самое, пожалуй, знаменитое из Π1-высказываний, известное широкой публике как «последняя теорема Ферма» (см. также примечание [28]). Однако рассуждение, предложенное Эндрю Уайлзом в качестве доказательства утверждения Ферма, представляет собой не рассуждение, независимое от гипотезы Таиямы, — каким оно неизбежно оказалось бы, будь эта гипотеза правилом системы «
22
Мне, разумеется, могут возразить, и не без оснований, что создание робота-математика отнюдь не входит в перечень ближайших задач исследований в области искусственного интеллекта; соответственно, попытки отыскания упомянутого алгоритма
23