телеологические аспекты вполне приемлемыми, коль скоро они не вступают в конфликт с действительным физическим поведением.) За подробностями отсылаю читателя к соответствующей литературе.

Другая идея, о которой я хотел упомянуть, — это теория твисторов (см. 7.17). Поводом для создания этой теории послужили все те же ЭПР-головоломки, однако решения для них она (как таковая) пока не предоставляет. Ее сила в другом — в неожиданных и изящных математических описаниях некоторых фундаментальных физических концепций (таких, например, как электромагнитные уравнения Максвелла, см. §4.4 и НРК, с. 184-187, приобретающие в теории твисторов привлекательную математическую формулировку). Имеется и нелокальное описание пространства-времени, где каждый луч света представляется в виде точки. Именно эта пространственно-временная нелокальность и связывает теорию твисторов с квантовой нелокальностью ЭПР-ситуаций. Кроме того, в основе теории лежат комплексные числа и соответствующая геометрия, чем достигается тесная взаимосвязь между комплексными коэффициентами U-квантовой теории и структурой пространства- времени. В частности, фундаментальную роль приобретает сфера Римана (см. §5.10), связанная здесь со световым конусом пространственно-временной точки (а также с «небесной сферой» находящегося в этой точке наблюдателя). (Неформальное описание идей, имеющих отношение к данной теме, приводится в книге Дэвида Пита [287]; относительно краткое, но строгое описание теории твисторов можно найти в работе Стивена Хаггета и Пола Тода [209]{98} .)

Рис. 7.17. Теория твисторов предлагает альтернативную физическую картину пространства- времени, где лучи света представлены точками, а события — целыми сферами Римана.

Думаю, продолжать углубляться в эти идеи дальше будет не совсем уместно. Я упомянул о них только для того, чтобы показать, что существует множество возможностей изменить нашу уже и так чрезвычайно точную картину физического мира, превратить ее в нечто, совершенно отличное от того, к чему мы успели привыкнуть за прошедшие десятилетия. Такое изменение должно удовлетворять требованию совместимости — иначе говоря, с помощью нового описания мы должны суметь воспроизвести все успешные результаты U-квантовой теории (равно как и общей теории относительности). Однако оно должно также позволить нам продвинуться за сегодняшние пределы и осуществить физически корректную модификацию квантовой теории с целью замены процедуры R на какой-либо реальный физический процесс. В этом (по меньшей мере) я убежден твердо; мне также представляется, что такая «корректная модификация» будет включать в себя некую OR-подобную процедуру, основанную на идеях, изложенных в §6.12. Напомню, что теории, сочетающие в себе относительность с «реалистичной» редукцией состояний (такие как ГРВ-теория) сталкиваются сегодня с труднопреодолимыми проблемами (в частности, связанными с сохранением энергии). Это лишь укрепляет мою собственную уверенность: прежде чем мы сможем хоть сколько-нибудь серьезно продвинуться в понимании фундаментальных вопросов физики, мы должны фундаментально изменить наши представления о мире.

Нисколько не сомневаюсь я и в том, что истинный прогресс в физическом понимании феномена сознания попросту невозможен без все того же фундаментального изменения в нашем физическом мировоззрении.

8. Возможные последствия

8.1. Искусственные разумные «устройства»

 Какие же выводы должны мы сделать, исходя из предыдущих рассуждений, о предельном потенциале искусственного интеллекта? В первой части книги было недвусмысленно показано, что никакое развитие технологий производства электронных роботов с компьютерным управлением не приведет в конечном итоге к созданию действительно разумной искусственной машины — в том смысле, что машина будет способна понимать, что она делает, и действовать на основе этого понимания. Электронные компьютеры, несомненно, играют очень важную роль в прояснении многих вопросов, связанных с ментальными феноменами (возможно, прежде всего тем, что наглядно показывают, что подлинными ментальными феноменами не является), не говоря уже об их чрезвычайной полезности и бесценном вкладе в научный, технический и социальный прогресс. Вывод, впрочем, однозначен: компьютеры делают что-то принципиально отличное от того, что делаем мы, сосредоточивая сознательное внимание на очередной проблеме.

Однако, как можно было понять из продолжения нашего разговора во второй части, я ни в коем случае не утверждаю, что создать подлинно разумное устройство совершенно невозможно; просто такое устройство не будет являться «машиной» — в том конкретном смысле, что «машиной» управляет компьютер. В основе его работы должны будут лежать те же физические процессы, которые ответственны за возникновение нашего собственного сознания. Поскольку физической теории таких процессов в нашем распоряжении еще нет, представляется несколько преждевременным делать какие-то умозаключения относительно того, будет ли вообще построено такое устройство, и если будет, то когда. Тем не менее, в рамках поддерживаемой мною точки зрения C (см. §1.3), согласно которой мышление может быть в конечном счете объяснено научно, хотя и с привлечением понятия невычислимости, создание этого устройства вполне допускается.

Не думаю, что такое устройство непременно должно быть по своей природе биологическим. Более того, я не думаю, что между биологией и физикой (или между биологией, химией и физикой) проходит какая-то принципиально непреодолимая граница. Биологическим системам действительно зачастую присуща тонкость и сложность организации, далеко превосходящая даже наиболее изощренные из наших (порой очень и очень изощренных) физических построений. Однако совершенно очевидно, что мы все еще находимся на очень раннем этапе физического понимания нашей Вселенной — в особенности, феноменов, имеющих отношение к мышлению. Таким образом, можно ожидать, что в будущем сложность наших физических построений существенно возрастет. Можно предположить, что в этом будущем усложнении немалую роль сыграют физические эффекты, о которых мы сегодня имеем весьма смутное представление.

Не вижу причин сомневаться в том, что в не столь отдаленном будущем некоторые из приводящих нас сейчас в недоумение эффектов (Z-загадок) квантовой теории найдут удивительные применения в самых разнообразных областях. Уже сегодня предлагаются идеи использования квантовых эффектов в криптографии, что позволяет достичь результатов, недоступных классическим устройствам. В частности, имеются теоретические разработки, предполагающие существенное использование квантовых эффектов (см. [26]) и направленные на отыскание способа передачи секретной информации от отправителя к получателю таким образом, чтобы перехват сообщения третьей стороной был невозможен без обнаружения факта перехвата. На основе этих идей уже были разработаны экспериментальные устройства, которые, несомненно, найдут через несколько лет самое широкое коммерческое применение. В области криптографии было предложено и множество других схем, так или иначе использующих квантовые эффекты, и можно сказать, что вчера еще не существовавшая наука квантовая криптография сегодня развивается бурными темпами. Более того, возможно, что когда-нибудь мы действительно сможем построить квантовый

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату