сами обладают цветным зарядом, а значит, могут производить новые виртуальные глюоны. Этот процесс ведет к «размазыванию» цветового заряда, то есть к явлению, прямо противоположному экранированию. И на малых расстояниях этот процесс преобладает над экранированием.
Теперь частица с цветовым зарядом, подходя все ближе к кварку и проникая все глубже в облако размытого цветового заряда, встречает в центральных частях все меньший и меньший заряд, и на достаточно малых расстояниях интенсивность взаимодействия ее с кварком ослабевает. Это явление называют асимптотической свободой частиц на совсем малых расстояниях, так как они практически не взаимодействуют и свободны. С увеличением же расстояния все более далекие части размазанного цветового заряда включаются во взаимодействие с частицей, и его эффективность нарастает, поддерживая постоянной силу взаимодействия. Согласно современным представлениям с увеличением расстояния цветная сила не уменьшается (как в случае электрической силы), а остается постоянной. Поэтому, чтобы все дальше и дальше удалять взаимодействующие цветовой силой частицы друг от друга, надо затрачивать энергию, и при росте расстояния между частицами требуемая энергия нарастает линейно с расстоянием.
Это необычное свойство цветной силы, вероятно, и обусловливает невозможность вырвать изолированный кварк из адрона. Ситуация похожа на такую, когда взаимодействующие частицы как бы связаны резиновым шнуром. Если сообщить кварку очень большую энергию, то «резиновый шнур» разорвется и на месте разрыва за счет сообщенной энергии возникнет пара «кварк и антикварк». Улетающий кварк утащит за собой возникающий на месте разрыва антикварк, и вместе они составят мезон, который и вылетит из адрона вместо одиночного кварка.
Таким образом, кварки «заперты» внутри адронов. Они образуют системы, которые в целом нейтральны по цвету. А поскольку глюоны тоже цветозаряжены, то они также «заперты» внутри адронов. Вот почему, несмотря на то, что переносчики сильного взаимодействия — глюоны — обладают нулевой массой, как и фотоны, сильное взаимодействие, в отличие от электромагнитного, не простирается на большие расстояния, а ограничено примерно объемом адронов. Размер адронов порядка размеров атомного ядра.
Как уже говорилось, при температуре более миллиона миллиардов градусов существует единое электрослабое взаимодействие. При меньшей температуре оно распадается на электромагнитное и слабое. Внешне эти взаимодействия совсем не похожи друг на друга. Сильное (цветное) даже при столь высоких температурах держится совершенно особняком, оно не похоже на электрослабое взаимодействие. Если в электрослабых взаимодействиях участвуют все частицы — и лептоны, и кварки, — то в сильных только кварки.
Все процессы, которые мы до сих пор рассматривали, не могут вести к превращению, например, кварка в лептон или кварка в антикварк. Конечно, при столкновении достаточно энергичных лептонов могут рождаться и кварки, но обязательно в паре с антикварками, так, чтобы суммарное количество тех и других было одинаковым. Точно так же столкновение кварка с антикварком приводит к их аннигиляции — превращению в лептоны и фотоны, но при этом исчезает обязательно пара, поодиночке кварки исчезать не могут.
Таким образом, в природе должна сохраняться разность числа кварков и антикварков. Эту разность называют барионным зарядом (точнее, барионным зарядом называют разность, деленную на три). До сих пор во всех экспериментах физиков барионный заряд сохранялся. Не могут ли при очень больших энергиях, намного превышающих уже рассмотренные (тоже немалые!), происходить какие-либо реакции, которые не сохраняют барионный заряд и которые невозможны при меньших энергиях и поэтому не были замечены физиками?
Оказывается, как утверждает теория, такие процессы возможны, но только при совершенно фантастических энергиях.
Мы рассматривали энергии, которыми обладают частицы при температуре в миллион миллиардов градусов. Теперь нам предстоит обратиться к температурам и энергиям еще в тысячу миллиардов раз большим.
Что же происходит при таких больших энергиях?
Прежде всего заметим, что чем больше энергия, тем на меньшее расстояние могут сблизиться сталкивающиеся частицы (это следует из соотношения неопределенностей квантовой механики).
Мы уже знаем, что по мере уменьшения расстояния между взаимодействующими частицами (что требует увеличения энергии сталкивающихся частиц) эффективность электромагнитного взаимодействия нарастает, а сильного — падает из-за процессов взаимодействия с вакуумом (разобраны выше экранировки и антиэкранировки).
Оказывается, что на малых расстояниях, которые в миллион миллиардов раз меньше атомного ядра, а значит, и при больших энергиях, соответствующих температуре в миллиард миллиардов миллиардов градусов, все три вида взаимодействий — электромагнитное, слабое и сильное — должны стать одинаково эффективными, потерять свою индивидуальность. При энергиях, больших указанной, должно существовать единое Великое (универсальное) взаимодействие.
При столь больших энергиях интенсивно рождаются новые частицы — переносчики универсального взаимодействия — очень массивные
Свойства X- и Y-переносчиков поистине удивительны: они могут превращать кварки в лептоны и обратно, а также кварки в антикварки. Таким образом, X-и Y-частицы — это своеобразные
Мы помним, что рассмотренные нами до сих пор частицы (кроме X- и Y-бозонов) при температуре больше миллиона миллиардов градусов не имеют массы покоя. При температурах еще в тысячу миллиардов раз большей (температуре Великого объединения) уже все частицы, в том числе и Х- и Y-бозоны, не имеют массы покоя.
Кроме уже встречавшихся нам частиц, при этих температурах существует еще один набор хиггсовских частиц (отличный от того, с которым мы встретились ранее). С понижением температуры ниже температуры Великого объединения срабатывает уже знакомый нам хиггсовский механизм, приводящий к нарушению симметрии, на этот раз симметрии Великого объединения. Только здесь явления, подобные описанным нами ранее, происходят с этими новыми хиггсовскими частицами.
При температурах, больших температуры Великого объединения, хиггсовские частицы были свободными. С падением температуры образуется «конденсат» хиггсовского поля — новое низшее состояние системы, то есть еще одна разновидность вакуума. Это уже третья по счету.
Разные вакуумы, или лучше сказать разные «вакуумноподобные состояния», обладают разной плотностью энергии. Из-за образования хиггсовского «конденсата» X- и Y-бозоны (переносчики универсального взаимодействия) приобретают массу — они становятся сверхтяжелыми. Рождаться при низких температурах они не могут. Единое взаимодействие теперь расщепляется на сильное и электрослабое.
Итак, мы видели, что с повышением энергии, с повышением температуры разные виды взаимодействий, совсем непохожие в обычных условиях, приобретают схожие черты и сливаются в единое взаимодействие.
На наших глазах происходит осуществление великой научной мечты А. Эйнштейна — мечты об объединении всех сил природы. При энергиях Великого объединения сливаются воедино три силы: электромагнитная, слабая и сильная. Единственная сила, оставшаяся пока в стороне, — это гравитационная, действию которой подвергаются абсолютно все виды материи. Осталось немного — объединить при каких-то совсем сверхбольших температурах силу гравитации с уже объединенной универсальной силой Великого взаимодействия. Но этот последний шаг в теории оказался и самым