В физике элементарных частиц за последние два десятка лет произошел настоящий переворот. Стало ясно, что элементарные частицы, из которых состоит вещество, например такие, как протон и нейтрон, это вовсе не «кирпичики мироздания», а сложные системы, состоящие из еще более элементарных объектов — кварков. Было установлено существование целых классов новых частиц с совершенно необычными свойствами. Но, пожалуй, самое важное — это установление замечательного единства различных сил природы, которые еще недавно считались совсем несхожими по своей сути. Такое единство проявляется при очень больших энергиях и поэтому особенно важно для понимания начала расширения Вселенной.

Физика не впервые сталкивается с ситуацией, когда силы, совсем непохожие друг на друга, оказывались различными проявлениями более общей сущности. Такое случилось с электрическими и магнитными взаимодействиями. Люди были знакомы с проявлениями этих сил с незапамятных времен и думали, что магниты никак не воздействуют на электрические заряды и наоборот. Однако опытами А. Ампера, М. Фарадея и других было установлено, что движущиеся заряды создают магнитное поле, а движение магнита ведет к появлению электрических сил. Электромагнитная теория Дж. Максвелла через полвека объединила эти на первый взгляд разные взаимодействия в единую сущность — в электромагнитное поле. Таким образом, оказалось, что электромагнетизм един, и только в специальных условиях, когда нет движения, нет изменения полей во времени, он распадается на электричество и магнетизм.

А. Эйнштейн вскоре после создания общей теории относительности начал титаническую работу, пытаясь объединить электромагнетизм и гравитацию — те два вида взаимодействий, которые тогда были известны. Эти попытки он продолжал всю жизнь. Однако в то время наука не была еще готова не только для успешного выполнения этой задачи, но даже для осмысления грандиозности и значимости этих попыток. Очень многие физики относились к попыткам А. Эйнштейна весьма скептически. Так, знаменитый физик В. Паули образно говорил по этому поводу: «Что разделено богом, человеку не соединить». Когда же позднее начались попытки объединения других сил природы, то они часто встречали такой же скептицизм.

Весной 1988 года в Триесте я спросил знаменитого пакистанского физика, директора Международного исследовательского центра А. Салама о первых попытках создания теорий, объединяющих различные силы. Он ответил, что лет тридцать назад в это почти никто не верил, и посоветовал прочитать письмо, которое ему написал В. Паули в 1957 году и которое А. Салам приводит в одной из своих статей. В этом письме говорится: «Не торопясь читаю Вашу статью. (Под ярким Солнцем на берегу Цюрихского озера.) Меня очень удивило ее название — «Универсальное взаимодействие Ферми»; это связано с тем, что с некоторых пор я придерживаюсь правила: если теоретик говорит «универсальный», то это означает чистую бессмыслицу».

С времен первых попыток А. Эйнштейна прошло много десятилетий, и ситуация в физике резко изменилась. В настоящее время известны четыре вида физических взаимодействий: гравитационные, слабые, электромагнитные и сильные.

До сих пор мы говорили главным образом о гравитационном взаимодействии, управляющем движением небесных тел, но в мире элементарных частиц им можно пренебречь. Несколько предварительных слов о трех других взаимодействиях.

Примером процесса, идущего за счет слабого взаимодействия, является распад свободного нейтрона n на протон р, электрон е и антинейтрино ?e. Мы видим существенное отличие проявления этого взаимодействия от рассмотренных нами проявлений гравитационного взаимодействия. Гравитация в том понимании медленных движений, о котором мы говорили, меняет только состояние движения частиц, слабое же взаимодействие меняет внутреннюю природу частиц: вместо нейтрона появляются протон, электрон и антинейтрино.

Сильные взаимодействия обусловливают различные ядерные реакции (такие, например, как термоядерные реакции), а также возникновение сил, связывающих нейтроны и протоны в ядра.

С электрическими и магнитными силами мы знакомы по школьным опытам, а поэтому они не нуждаются в комментариях.

Частицы, из которых состоит материя, делятся на группы в зависимости от свойств их взаимодействия.

Частицы, не участвующие в сильных взаимодействиях, называют лептонами. Таких частиц шесть. Это электрон e, мюон ?-, тау-лептон ?- и три сорта нейтрино: электронное ?e мюонное ??  и тау-нейтрино ??. (Тау-нейтрино пока не открыто. Однако, по-видимому, никто не сомневается в его существовании. Мы в дальнейшем не будем делать оговорок об отдельной неполноте наших знаний.)

Лептоны группируются в пары: электрон с электронным нейтрино, мюон — с мюонным, тау-лептон — с тау-нейтрино. Это объединение обусловлено тем, что каждый сорт нейтрино участвует в реакциях вместе со своим партнером по паре. Первые три частицы имеют электрический заряд, равный заряду электрона. Все сорта нейтрино электронейтральны.

Остальные фундаментальные частицы носят название кварков; они участвуют в сильных взаимодействиях (а также и в слабых, и в электромагнитных). Из кварков слагаются частицы, участвующие в сильных взаимодействиях, и называются адронами. Примерами адронов являются протон, нейтрон, пи-мезон. Всего кварков шесть, они обозначаются латинскими буквами и также группируются в три семейства, соответствующие семействам лептонов: (u, d), (с, s), (t, b).

Кварки имеют довольно экзотические свойства. Если выражать их электрический заряд в единицах заряда электрона, то оказывается, что заряды кварков дробные. Первые частицы в каждой паре имеют заряд +2/3. Остальные ? -1/3. Каждой частице соответствует античастица. Для электрически заряженных частиц заряд античастиц противоположен. Например, электрону е- с отрицательным зарядом соответствует античастица позитрон е+ с положительным зарядом, кварку u с зарядом +2/3 соответствует антикварк u с зарядом -2/3 и т. д. (Античастицу обычно обозначают черточкой над буквой.)

Все перечисленные выше фундаментальные частицы, из которых состоит физическая материя, обладают еще одним важным свойством. Им присуще собственное вращение — внутренний момент импульса, или, как его называют в квантовой механике, спин. Причем спин этих частиц, измеренный в единицах планковской постоянной h, равен 1/2.

Еще несколько слов о кварках. Как уже было сказано, кварки являются составляющими частями сильно-взаимодействующих частиц — адронов. Адроны, в свою очередь, подразделяются на барионы, у которых полуцелые спины и мезоны с целыми спинами. Каждый барион состоит из трех кварков, а мезон — из кварка и антикварка. При таких объединениях заряд составной частицы обязательно оказывается целым. Например, состав протона — uud, нейтрона — ddu, состав ? +-мезона — ud.

Замечательной особенностью кварков является то, что в сегодняшней Вселенной они существуют только в связанных состояниях — только в составе адронов. Одиночные, свободные кварки физиками не обнаружены, несмотря на многочисленные попытки это сделать. Почему кварк не может быть вырван из адрона или создан каким-либо иным способом?

Это один из основных вопросов физики элементарных частиц, и мы к нему еще вернемся.

Перечисленные нами элементарные частицы физической материи имеют полуцелые спины, и их называют фермионами.

Обратимся к проблеме взаимодействия между частицами. Все процессы, которые происходят во Вселенной, есть результат этих взаимодействий. Но как же происходят взаимодействия, в чем их суть?

Частицы взаимодействуют путем обмена другими частицами — переносчиками взаимодействия. Каждый из перечисленных выше четырех видов взаимодействия имеет своих переносчиков.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату