3 черными шарами) и что эта величина есть обоснование инобытия не фактическое (так как неизвестно, когда и как наступят соответствующие факты получения черных шаров), но только смысловое.
Тогда понятным делается и то, какую форму примет вероятность, когда она станет действительностью. Действительностью бытие 10 шаров станет в том случае, если мы все эти 10 шаров реально вынем из урны, т. е. когда число возможных выниманий совпадет с числом наличных в урне шаров. В таком случае числитель и знаменатель изучаемого примера [25] будут равны и вероятность окажется равной единице. Следовательно, действительность есть такая вероятность, которая равна единице. Это понятно еще и потому, что единица есть полное полагание, а действительность это прежде всего есть полное полагание. С другой стороны, не трудно себе представить, что вероятность, равная нулю, окажется просто невозможностью. Это не требует пояснений. Стоит только указать на то, что вполне представима и вероятность, равная бесконечности. Если вдуматься в формулу = ? то станет ясным, что, поскольку здесь ? должно быть тоже равно бесконечности, мы всегда будем иметь случай, благоприятный событию |W ], когда бы и как бы ни происходил этот случай. Другими словами, это необходимость. Это тоже понятно из более общих рассуждений. Все смысловое вообще отличается от фактического, инобытийного тем, что оно есть в бесконечной степени то, чем инобытийное является только в конечной степени. Если мы будем бесконечное число раз измерять углы эвклидовского треугольника и бесконечное число раз сумма их оказывается равной двум прямым, то это и значит, что данная теорема [о сумме углов треугольника] не есть ни действительность, ни возможность, но самая настоящая необходимость. Если бы оказалось, [что] два прямых угла получаются только для конечного числа треугольников, то теорема имела бы только вероятное значение. А если бы они получались для конечного числа треугольников, но больше никаких других треугольников не существовало бы, то это была бы действительность. Также если и были бы всякие другие треугольники с суммой углов в два прямых или еще с иными суммами, но мы свое суждение относили бы только [к] данному конечному числу фактически измеренных треугольников, то и в этом случае наша теорема была бы не необходимостью и не вероятностью, но действительностью. Итак, вероятность, равная бесконечности, есть необходимость.
Другими словами, математическая вероятность в собственном смысле, т. е. когда она не есть ни нуль, ни бесконечность, может помещаться только между нулем и единицей, т. е. может быть только правильной дробью.
8. Теперь, наконец, мы можем сказать специально и об аксиоме самотождественного различия в математической теории вероятностей. Нетрудно сообразить по аналогии с этой же аксиомой в арифметике (§ 45), что вероятность есть прежде всего некая совокупность изоли–рованых моментов. Однако эта совокупность здесь вполне специфична. Она есть, как мы только что видели, отношение количества случаев, благоприятствующих событию А, к количеству всех равновозможпых, несовместимых и единственных случаев вообще. Вот это отношение здесь и рассматривается. В арифметике числа строятся так, что они сравнимы между собою и определяют друг друга, так что если есть а и есть А, то есть и с, которое есть их сумма. Также если есть с, то в нем всегда можно отличить одно от другого и найти такое а и такое Ъ, что их сумма как раз будет равняться с. То же самое мы находим в теории вероятностей. Если мы знаем, например, вероятность рождения детей вообще (в данной стране за данный промежуток времени), то мы можем сказать, что вероятность рождения мальчиков меньше вероятности рождения детей вообще и что последняя получится, если к этой вероятности мы прибавим еще вероятность рождения девочек. Отсюда и аксиома.
Аксиома самотождественного различия в теории вероятностей: математическая вероятность события есть отношение количества случаев, ему благоприятствующих, к числу всех единственно и равновозможных, несовместимых случаев, причем вероятность частного случая события меньше, чем вероятность события вообще, и предполагает соответствующее дополнение до нее.
9. Очень важно отметить, что те, кто занимаются аксиоматикой теории вероятностей, также сталкиваются с подобными постулатами. Я укажу на С. Н. Бернштей–на, который счел нужным[26] ввести здесь в качестве первейшей аксиомы т. н. аксиому сравнения вероятностей. Он формулирует ее так: «Если а есть вид (частный случай в узком смысле слова) события А, то вер. а<вер. А; обратно, если между вероятностями фактов ?? и А существует неравенство вер. ?? <вер. А, то оно означает, что вер. ?? — ?, где а есть некоторый вид события А». С. Н. Бернштейн называет это аксиомой сравнения. Ее можно было бы назвать самыми разнообразными словами (например, по Гильберту, это была бы «аксиома связи» или «аксиома сочетания»). Мы же можем сказать только то, что единственное обстоятельство, выдвигаемое здесь, есть необходимость различения внутри данной вероятности большего или меньшего и их складывания в одну данную вероятность. Но это есть только результат функционирования категории самотождественного различия.
Аксиома эта почти не требует никаких пояснений. Само собою, конечно, разумеется, что вероятность рождения мальчиков меньше вероятности рождения детей вообще. Это первая часть аксиомы. Вторая часть гласит о том, что если вероятность смерти в течение года больше, чем смерти в течение месяца, то мы можем вычислить вероятность смерти и для более специфического случая, например для смерти 70–летнего по сравнению со смертью 20–летнего. Оказывается, что вероятность старику умереть в течение (примерно) трех недель та же, что и вероятность молодому человеку умереть в течение года. Следовательно, чтобы из первой вероятности получить вторую, надо ее соответственно восполнить.
Переходим ко второй большой составной категории в области идеальной структуры числа, к подвижному покою. Применить эту категорию к изученным нами областям математического предмета будет теперь легче, поскольку мы более или менее освоились со смысловым своеобразием каждой из этих областей и на большом примере уже могли почувствовать их диалектическое место.
1. Самотождественное различие давало нам в применении к числу совокупность, которая складывалась из элементов. Совокупность и была самотождественным различием этих элементов. Теперь, применяя категорию подвижного покоя, мы получим, очевидно, тоже совокупность элементов, но не в их самотождественном различии, а в их подвижном покое. Если числовая совокупность действительно подчинена категории подвижного покоя, то это значит, что каждый элемент ее движется к другому элементу и ко всему целому и успокаивается на другом элементе и на всем целом. Раньше мы натолкнулись на совокупность как на систему различных моментов, натолкнулись на само различие моментов и на их тождество с целым. Но мы не знали, можно ли перейти от одного момента к другому, и брали многоразличность внутри совокупности как данную, как мертвую, как утвержденную неизвестно кем и как. Сейчас мы видим, что элементы не просто различны, но что при всем их различии можно перейти от одного к другому и что каждый элемент именно требует такого перехода.
Но что значит, что элемент требует перехода от себя к следующему? Это значит, что всем элементам свойственна некая упорядоченная система, свойственна идея порядка. Если я должен от А перейти к В и этого требует само А, это значит, что А и В определенным образом взаимно расположены, что существует некий порядок, заставляющий А идти именно к 2?, а не к С и не к ?> и т. п. Совокупность элементов, воплощающая на себе категорию подвижного покоя, есть, стало быть, уже не «самотождественная совокупность изолированных элементов», но «совокупность определенно взаимно расположенных элементов». Взаимное расположение, определенным образом данное, и есть, с одной стороны, движение, поскольку каждый элемент, находящийся тут во взаимном расположении, уже сам по себе требует перехода к соответствующему новому элементу, а с другой стороны, это есть и покой, так как взаиморасположение элементов есть нечто вполне устойчивое и нисколько не текучее.
2. Укажем теперь результаты применения категории подвижного покоя в отдельных областях. Что тут получается для арифметического числа? После данной выше характеристики интенсивного числа вообще в отличие от экстенсивного мы теперь гораздо легче и с большей уверенностью можем высказать относящиеся сюда термины и конструкции.
Арифметическое число чисто от всякой числовой ино–бытийности. Оно, говорили мы, нулевым образом инобытийно, инобытийно–нулевое число. Это значит, что в нем действует его чистая и ровно