лишним известных химических элементов в состав растений и животных входит всего два десятка. Действительно, если принять, что Харви весил 70 кг, то на столе должны были бы находиться: 45,5 кг кислорода, 12,6 кг углерода, 7 кг водорода, 2,1 кг азота, 1,4 кг кальция, 700 г фосфора, 260 г калия, 175 г серы, по 100 г натрия и хлора, 30 г магния, 3 г железа и в очень малых количествах несколько других элементов (например, иода — всего 0,03 г, а марганца — 0,01 г). Как же природа ухитрилась из небольшого числа «составных частей» создать такое чудо, как мыслящий человек? А также кустик земляники (и ее запах!), гигантское дерево эвкалипт, крошечного муравья и огромного кита, миллионы других видов растений и животных…

Однако подобных «чудес» в мире немало. Разве не удивительно, что всего 12 нот хроматической гаммы дают бесконечное число разнообразных мелодий — от бесхитростной песни монгольского пастуха до мотивов «Спящей красавицы» П. И. Чайковского?! Разве не удивительно, что всего 16 белых и 16 черных шахматных фигур способны создать огромное разнообразие шахматных комбинаций — начиная от простейшего «детского мата» в два хода и кончая гениальными творениями лучших шахматистов мира?! Наконец, разве не удивительно, что из небольшого числа букв (в венгерском алфавите их 38, в русском -33, в латинском — 26, в греческом — 24) можно составить бесконечное число слов, выражений и литературных произведений — от «Чижика-пыжика» до «Войны и мира» Л. Н. Толстого.

Так и в химии. Из ограниченного числа элементов, соединенных друг с другом в разных сочетаниях, построены все вещества. Возможности разных сочетаний элементов можно проиллюстрировать на таком примере. Во второй половине XX века ученые выяснили, что для записи всей наследственной информации живого организма достаточно всего нескольких химических элементов! А информация эта, «записанная» в живой клетке, определяет, что именно вырастет из этой клеточки, неразличимой для невооруженного глаза: сибирский кедр, морской конек или человек. Как же удается записать эту информацию?

Аборигены (коренные жители) Америки много веков назад изобрели «узелковую письменность»: к длинной веревке они привязывали шнурки с узелками различной формы. Таким образом они могли передавать разнообразную информацию. Возьмем теперь длинную «веревку», построенную из соединенных друг с другом атомов углерода (эти атомы легко соединяются в цепочки любой длины). Получится молекула, которая не несет никакой информации. Кстати, именно из таких молекул состоит полиэтилен, применяемый для изготовления пакетов, и парафин, из которого делают свечки. Разные свойства полиэтилена и парафина связаны в основном с разной длиной молекул-цепочек. Но если в разных местах этой молекулы присоединить по бокам атомы других элементов (в том числе и углерода), можно получить осмысленное «сообщение». Чтобы его «прочитать», надо знать, из каких элементов состоят боковые группы (кстати, «боковая группа» — обычный химический термин), каково их строение и по каким правилам они присоединяются к центральной нити. Именно по этому принципу природа создала «текст» с определенным биологическим смыслом — его называют генетическим кодом. И вряд ли здесь было бы возможно какое-то другое решение.

Чтобы собрать из готовых деталей какой-либо механизм, надо знать, как он устроен. Именно такая задача в первую очередь стояла перед химиками, которые захотели искусственно получать различные соединения. Химики всегда стремятся сделать что-то совершенно новое, никогда и никем не виданное, в природе не встречающееся (например, даже простейший полимер полиэтилен в природе сам по себе никогда не образуется). А зачем химикам все это было нужно? Ведь далеко не всегда очевидно, что полученное ими новое вещество принесет хоть какую-нибудь пользу! Прежде всего, создавать новые вещества очень интересно! Зачем ребенок строит из песка или из деталей конструктора башни и крепости? Ведь он прекрасно знает, что они ненастоящие. Но — интересно! Химики в этом отношении похожи на детей — им тоже очень интересно «построить» в колбе сложную конструкцию из атомов, синтезировать какое-нибудь вещество с необычными свойствами. Но дело не только в интересе. Многие вещества, которых в природе мало или вообще нет. оказались совершенно необходимы людям. Среди них — удобрения, необходимые для повышения урожайности сельскохозяйственных культур: без них сельское хозяйство уже не смогло бы прокормить выросшее во много раз население Земли. Химики получили также множество разнообразных лекарственных веществ, чтобы избавлять людей or болезней. Или — взрывчатые вещества, с помощью которых, к сожалению, этих же людей можно убивать…

Чтобы получить какое-либо новое вещество или вещество, уже созданное природой, надо знать, какие атомы и в каких пропорциях содержатся в этом веществе. Это — задача аналитической химии, о которой еще будет отдельный рассказ. Но этого мало. Требуется еще установить, в каком порядке должны быть соединены атомы в веществе, т. е. каково его строение. А от строения вещества (порядка соединения атомов) очень сильно зависят его свойства. Например, в молекуле аминокислоты аланина содержатся 3 атома углерода, 7 атомов водорода, 1 атом азота и 2 атома кислорода (химики записывают такую формулу в виде C3H7NO2, обозначая буквами сорт атомов и цифрами их количество в молекуле). Аланин встречается во всех организмах в свободном виде и в составе белков; это бесцветные кристаллы сладкого вкуса. Ноте же атомы и в таком же количестве находятся и в молекуле искусственно полученного вещества пропил нитрита — летучей, взрывчатой, очень ядовитой жидкости, пары которой при вдыхании вызывают резкое расширение сосудов, снижение кровяного давления и учащение сердцебиения (похожим действием обладает и всем известный нитроглицерин, так как его строение очень напоминает строение пропил-нитрита). Такое существенное различие в свойствах двух соединений одинакового состава объясняется тем, что указанные атомы соединены в этих веществах по- разному: в аланине атом азота соединен с двумя атомами водорода и одним атомом углерода, а в пропилнитрите — с двумя атомами кислорода.

Допустим теперь, что химик узнал, какие элементы и в каком соотношении содержатся в данном веществе; узнал он также, в каком порядке они соединены друг с другом. Сможет ли он теперь самостоятельно получить такое же вещество? Эта задача похожа на такую: человеку сказали, какие детали и в каком количестве содержатся в его телевизоре или автомобиле, а также в каком порядке они соединены друг с другом. Сумеет ли он, воспользовавшись этой информацией, самостоятельно сделать точно такой же телевизор или автомобиль? Понятно, что это зависит от мастерства человека, его знаний и возможностей. Если он должен сначала сам найти нужные руды, выплавить из них разные металлы… ну и так далее, то вряд ли он что-то успеет за всю свою жизнь. Если же это опытный механик, и у него есть все готовые детали, а также хорошие помощники, то за месяц-другой, глядишь, у него что-то и получится.

Примерно такая же ситуация и у химиков. Первые химики все реактивы готовили для себя сами и до «большой» химии было еще далеко. Сначала должны были заработать химические заводы, производящие тысячи разнообразных химических веществ — «заготовок» для будущих искусственных изделий. Одновременно должны были открыться химические лаборатории, в которых бы молодые химики учились премудростям соединения элементов в нужных пропорциях и в нужном порядке. Наконец, ученые-химики должны были разработать способы и приемы разнообразных превращений. Именно поэтому химия начала особенно интенсивно развиваться только во второй половине XIX века.

Все эти условия действуют и в настоящее время: химические предприятия производят вещества для синтезов (такие вещества называются химическими реактивами). Некоторые из них производятся миллионами тонн, потому что они нужны для получения синтетических тканей, моющих веществ, средств защиты растений и множества иных товаров, другие — в количестве всего лишь нескольких граммов или даже миллиграммов (например, радиоактивные препараты).

Подобно тому, как опытный механик из отдельных частей собирает сложный механизм (а при необходимости и сам изготавливает некоторые части), химики научились «разбирать» сложные органические молекулы на составные части и соединять их в иной последовательности — по своему желанию. Появилась также возможность, не затрагивая остов молекулы, заменять в ней отдельные фрагменты другими, что приводит порой к полнейшему изменению всех свойств вещества. Как из рога изобилия посыпались новые методы и приемы синтеза самых разнообразных органических соединений.

Откуда взялись атомы

До сих пор, говоря об атомной теории, о том, как из нескольких сортов атомов, соединенных между собой в разном порядке, получаются совершенно непохожие друг на друга вещества, мы ни разу не задались «детским» вопросом — а откуда взялись сами атомы? Почему атомов одних элементов очень много, а других — очень мало, и распространены они очень неравномерно. Например, всего один элемент

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату