Формулы, количественно характеризующие радиоактивный распад, в школе не изучают. Тем не менее они достаточно просты и позволяют провести интересные расчеты.

Если бы мы задались целью проследить за конкретным атомом радионуклида, мы бы не смогли предсказать, когда он распадется. Этот случайный процесс. Однако даже в мельчайшей пылинке содержится огромное число атомов, и если эти атомы радиоактивны, то их распад подчиняется строгим математическим закономерностям: в силу вступают статистические законы, которые описывают количественные изменения большого числа объектов. И оказывается, что каждый радионуклид можно охарактеризовать вполне определенной величиной— периодом полураспада (Т1/2). Есть радионуклиды-долгожители, для которых периоды полураспада исчисляются миллионами и даже миллиардами лет. Известны и короткоживущие радионуклиды, распадающиеся полностью за ничтожные доли секунды. Очевидно, что если имеется, например, 1 г радиоактивного вещества, то чем меньше период его полураспада, тем большей радиоактивностью будет обладать вещество.

Сейчас мы выведем формулу, которая показывает, как уменьшается число атомов радионуклида (а вместе с ним — и его радиоактивность) со временем. Пусть в начальный момент времени t=0 имеется N0 атомов радионуклида с периодом полураспада Т1/2 Как следует из определения периода полураспада, по прошествии промежутка времени t= Т 1/2 останется N0/2 атомов. Когда пройдет еще столько же времени (t = 2Т1/2), останется половина от N0/2 атомов, т. е. N0/4 и т. д. Рассуждая далее аналогично, получим ряд уменьшения числа атомов (табл. 2).

Последняя строчка легко выводится из предыдущих «по аналогии». Таким образом, если прошло n периодов полураспада (п = t / Т1/2), то останется N = N/2t/T1/2 атомов. Это и есть основная формула, по которой можно рассчитать, сколько атомов радионуклида останется через определенный промежуток времени t, если известно его начальное количество N0 и период полураспада Т1/2 Точно такая же формула позволяет рассчитать изменение радиоактивности со временем:

а = a0/ 2n,

где ао — начальная радиоактивность.

Здесь надо пояснить, что радиоактивность а — это число атомов, распадающихся в образце в единицу времени; радиоактивность пропорциональна имеющемуся числу атомов, поэтому она изменяется со временем так же, как и N.

На практике радиоактивность образца обычно характеризуют не общим числом происходящих в нем распадов, а пропорциональным ему числом импульсов I, которые регистрирует прибор, измеряющий радиоактивность (I= ка, где к — коэффициент пропорциональности). Очевидно, что и в этом случае формула имеет вид

I=I0/2n

По приведенным формулам можно определить, сколько останется радиоактивного вещества через определенное время или какова будет его активность, если известны период полураспада и начальное количество (или начальная активность) радионуклида. С другой стороны, зная начальную и конечную активность, а также время t, можно определить период полураспада.

Следует отметить, что приведенные формулы верны не только для целых, но и для дробных значений п. Правда, при нецелых п для расчетов потребуется знание логарифмов и использование калькулятора, производящего действия со степенями и логарифмами. Если же n — целое (т. е. прошло целое число периодов полураспада), то расчеты значительно упрощаются и часто их можно проделать даже в уме.

В качестве примера решим такую задачу. В лабораторию для биохимических исследований доставили препарат, меченный фосфором-32 (для этого радионуклида Т1/2 = 2 недели). Начальная активность образца составляла 512 импульсов в минуту в расчете на 1 мкг препарата. Можно ли будет использовать этот препарат для исследований через 12 недель, если для надежного измерения активность препарата должна быть не ниже 10 импульсов в минуту на 1 мкг?

Для решения этой задачи рассчитаем активность препарата к указанному сроку. По условию Iо = 512 имп./(мин х мкг), Т1/2 = 2 недели, t = 12 недель, п = 12/2 = 6. Подставляем эти значения в формулу и получаем, что через 12 недель (примерно 3 месяца) активность снизится до I= 512 / 26 = 512 / 64 = 8 имп.(мин х мкг). Следовательно, сотрудникам лаборатории отпущен сравнительно небольшой срок для решения стоящих перед ними научных задач — через 3 месяца придется заказывать новую партию дорогостоящего препарата. Отметим, что активность препарата, конечно, зависит от его общего количества, поэтому она отнесена к 1 микрограмму вещества; эта активность могла быть задана и в любых других единицах. Разумеется, числовые данные в этой задаче специально подобраны так, чтобы предельно облегчить расчеты. Например, если бы t было равно не 12, а, допустим, 12,8 неделям, пришлось бы возводить 2 в степень 12,8 / 2 = 6,4, что невозможно без калькулятора.

А вот более важный пример. Во время чернобыльской аварии из горящего реактора было выброшено большое количество очень опасного для человека радионуклида иод-131 1/2 = 8 суток). Опасен ли сейчас этот радионуклид? Поскольку с момента аварии прошло более 20 лет (т. е. более 900 периодов полураспада), количество иода-131 уменьшилось более чем в 2900 (или в 10400) раз. Это означает, что если бы в момент аварии (апрель 1986 года) вся Вселенная состояла только из иода-131, то уже через несколько лет от него не осталось бы ни единого атома!

Подобные расчеты для ученых не представляют большою труда. А вот точное и надежное измерение очень малых активностей является серьезной проблемой, которая занимает ученых уже целое столетие — с момента открытия самого явления радиоактивности. Повысив точность измерений слабых радиоактивных излучений, они добились значительных успехов в определении возраста многих археологических находок. Один из самых ярких примеров — радиоуглеродный метод анализа, о котором речь пойдет ниже.

Что такое радиоуглерод и откуда он берется

Вы. возможно, слышали или читали, что наша планета подвергается непрерывному облучению космическими частицами. Если бы не атмосфера, пропускающая к земной поверхности лишь небольшую часть космического излучения, жизнь на Земле была бы невозможна, а ее поверхность мало отличалась бы от поверхности Луны. В верхних слоях атмосферы под действием космических лучей идут самые разнообразные превращения одних элементов в другие. Одно из них — превращение атомов азота в атомы радиоактивного углерода-14. Подсчитано, что каждую минуту над 1 см2 земной поверхности образуется в среднем всего 145 атомов 14С. Если учесть площадь поверхности Земли, то получится, что ежегодно в атмосфере образуется примерно 8 кг радиоуглерода. Земля, как известно, существует миллиарды лет, и если бы углерод-14 был стабилен, то его масса на Земле исчислялась бы десятками миллионов тонн. Однако он радиоактивен и в результате распада снова превращается в азот. Период полураспада 14С довольно велик и составляет 5730 лет. Всего на Земле имеется 60 тонн радиоуглерода, из которых ежегодно распадается 8 кг — столько же, сколько его образуется (в этом случае говорят о радиоактивном равновесии, при котором скорость образования нуклида равна скорости его распада). Конечно, для земного шара 60 тонн — это очень малая величина; причем, в атмосферном углекислом газе количество радиоуглерода составляет лишь около 1 тонны, или 3 х 10-11 % от «обычного» углерода 12С (остальной радиоуглерод в основном растворен в воде).

Большинству из вновь образованных атомов 14С предстоит долгая жизнь — на многие тысячи лет. Какая их ждет судьба?

Прежде всего они довольно быстро окислятся кислородом и превратятся в молекулы углекислого газа. Этот радиоактивный углекислый газ равномерно перемешается с огромным количеством обычного углекислого газа. Известно, что углекислый газ атмосферы — основной источник углерода, который усваивается растениями в процессах фотосинтеза. Растениями питаются животные, поэтому вся живая

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату