Следовательно,

 .          (3.82)

Этот вывод мы используем для того, чтобы получить оператор предсказания в форме, связанной не со временем, а с частотой. [c.146]

Таким образом, прошлое и настоящее функции ?(t, ?), или точнее «дифференциала» d?(t, ?), определяют прошлое и настоящее функции f(t, ?), и обратно.

Если теперь А >0, то

           (3.83)

Здесь первый член последнего выражения зависит от области изменения d? (?, ?), в которой, зная лишь f(?, ?) для ??t, сказать ничего нельзя, и совершенно не зависит от второго члена. Его среднеквадратическое значение равно

 ,          (3.84)

и эта формула дает все статистическое знание о нем. Можно показать, что первый член имеет гауссово распределение с этим среднеквадратическим значением. Последнее равно ошибке наилучшего возможного предсказания функции f(t +A, ?).

Само же наилучшее возможное предсказание выражается вторым членом в (3.83):

 .          (3.85)

Если теперь положим

           (3.86)

[c.147]

и применим оператор (3.85) к ei?t, получив

 ,          (3.87)

то найдем, подобно (3.81), что

           (3.88)

Это и есть частотная форма наилучшего оператора предсказания.

Задача фильтрации в случае временных рядов типа (3.34) тесно связана с задачей предсказания. Пусть сумма сообщения и шума имеет вид

 ,          (3.89)

а сообщение имеет вид

 ,          (3.90)

где ? и ? распределены независимо в интервале (0, 1). Тогда предсказуемая часть функции m(t+a), очевидно, равна

 ,          (3.901)

а среднеквадратическая ошибка предсказания равна

 .          (3.902)

Допустим, кроме того, что нам известны следующие величины:

 [c.148]

 

 

 

 

 

           (3.903)

 

           (3.904)

 

 

 

           (3.905)

[c.149]

Преобразование Фурье для этих величин соответственно равно

           (3.906)

где

           (3.907)

то есть

           (3.908)

и

 ,          (3.909)

где для симметрии пишем

 .

Теперь мы можем определить k(?) из (3.908), как прежде определили k(?) из (3.74). Здесь мы принимаем

 

В результате

           (3.910)

и

 .          (3.911)

Таким образом, наилучшее определение функции m (t) с наименьшей среднеквадратической ошибкой есть

 .          (3.912)

[c.150]

Сравнивая это с уравнением (3.89) и пользуясь рассуждениями, подобными тем, посредством которых было получено (3.88), заключаем, что оператор для m (t)+n(t), дающий «наилучшее» представление функции m(t+a), имеет при записи в частотной шкале следующий вид:

 .          (3.913)

Этот оператор служит характеристическим оператором устройства, которое в электротехнике называют волновым фильтром. Величина а есть фазовое отставание фильтра. Она может быть положительной или отрицательной; если она отрицательна, то а называется фазовым опережением. Прибор, соответствующий формуле (3.913), может быть построен с какой угодно точностью. Подробности его конструкции нужны более для инженера-электрика, чем для читателя этой книги. Их можно найти в соответствующей литературе[147].

Среднеквадратическая ошибка фильтрации (3.902) может быть представлена как сумма среднеквадратической ошибки фильтрации для бесконечного фазового отставания

 

 

           (3.914)

[c.151]

и другого члена

 ,          (3.915)

зависящего от фазового отставания. Мы видим, что среднеквадратическая ошибка фильтрации есть монотонно убывающая функция фазового отставания.

Другим интересным вопросом в случае сообщений и шумов, порождаемых броуновым движением, является скорость передачи информации. Рассмотрим для простоты случай, когда сообщение и шум

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату