речам докладчиков. Профессор Александр Андреевич Колли озаглавил свое сообщение «О химической природе микроорганизмов» (опубликовано после съезда в 1894 г. отдельной брошюрой). Среди многого прочего он попытался вычислить сколько молекул помещается в клетке, например, в сперматозоиде. И пришел к выводу — очень мало! Получается парадокс: признаков, передаваемых по наследству очень много, а молекул (без которых нельзя передать признаки) мало... Это замечательно - Колли явно ошибался в расчетах — не мог он сделать правильные вычисления — не знал он молекулярную массу «средних» молекул, не знал он, какие молекулы существенны в передаче признаков по наследству — вообще, сказал бы сейчас каждый, ничего он не знал, чтобы сделать такой вывод. Была бы возможность - провел бы я исследование об ошибках в расчетах великих людей, несмотря на которые они оказывались правыми... (Например, ошибался в расчетах Лавуазье, но был прав в выводах). Этот парадокс — малое число молекул и множество признаков — впечатался в сознание Кольцова. Он думал о нем многие годы, пытаясь разрешить разными способами. Он опубликовал свое решение в 1927 г. в докладе на 3-м Всесоюзном съезде зоологов, анатомов и гистологов, т. е. через 34 года. Ответ этот звучит торжественно. Сущность его такова: признаки, передаваемые по наследству, определяются линейным расположением мономеров в полимерных молекулах (Кольцов думал, что это последовательность аминокислот в полипептидах). Эти гигантские полимерные молекулы (их в самом деле мало в клетке) размножаются по принципу матриц — свободные мономеры из раствора сначала выстраиваются вдоль «родительской» молекулы — матрицы, выстраиваются в соответствии с последовательностью мономеров в этой матрице. А затем образуются химические связи, сшивающие прилипшие к матрице мономеры с образованием точной «дочерней» копии. Эти полимерные молекулы размножаются как кристаллы. Читателю ясно, что это - формулировка самой главной идеи биологии XX века [1,7]. Идея матричного синтеза была забыта не понявшими ее современниками. Забыта не всеми. В 1925 г. учеников Н.К. и С.С.Четверикова — супругов Тимофеевых-Ресовских - по рекомендации Н.К.Кольцова и Н.А.Семашко Советское правительство командировало для работы в Германии в институте профессора Фогта. Громогласный, энциклопедически образованный Н. В. Тимофеев-Ресовский рассказывал об этой идее на своих, ставших знаменитыми семинарах в Берлин-Бухе, в своих многочисленных докладах на конференциях, семинарах, съездах в разных странах, в том числе на семинарах Нильса Бора в Копенгагене. Идея матричного синтеза особенно легко усваивалась физиками. Это можно понять. «Нет пророка в своем (биологическом) отечестве». Пророк - биолог в отечестве физиков — тут ему внимают с почтением и доверием. Да и по существу — главные доводы в пользу матричной концепции из области физики. Совершенно невероятно выстраивание в правильной последовательности мономеров в полимерной цепи в обычных химических реакциях. Совершенно невероятно определять правильную последовательность посредством специфических катализаторов - ферментов: не может быть необходимой степени избирательности катализа - частота ошибок в полимерных текстах была бы очень большой. Кроме того — чем будет определяться синтез нужных ферментов? Это же порочный круг. Это легко понимали физики. Так в начале 1930-х годов, после семинара, прельщенный красотой идеи Кольцова, к Н. В. Тимофееву-Ресовскому подошел юный аспирант М. Борна физик-теоретик Макс Дельбрюк и они начали совместные работы. Н. В. Тимофеев-Ресовский не только излагал и развивал идеи Кольцова. Он проводил экспериментальные исследования. Так была выполнена знаменитая работа трех авторов: Н.В.Тимофеева- Ресовского, немецкого физика К.Г.Циммера и М.Дельбрюка. В этой работе они определяли частоту мутаций у дрозофил в зависимости от интенсивности радиоактивного облучения. Полагая, что мутации обусловлены попаданием разрушающего кванта в мишень (ген), они оценили размер этой мишени — гена. Ген оказался молекулярных размеров. Эта работа еще больше продвинула идею матричных молекул в среду физиков. Когда великий физик Эрвин Шредингер читал свои лекции (по теоретической биологии!) в Дублинском университете — его предметом и был взгляд на биологию с точки зрения физика. Он основывал свои взгляды на представлениях об одномерном кристалле, термодинамике и матричной концепции, полагая, что она, эта концепция, общепринята у биологов. Когда эти лекции были опубликованы в виде его знаменитой книги «What is Life? - The Physical Aspect of the Living Cell», Дж. Б. Холден откликнулся на нее статьей в Nature: концепция не общепринята в биологии, а принадлежит великому российскому биологу Кольцову [8]! Под влиянием Н. В. Т-Р Макс Дельбрюк стал заниматься генетикой фагов и стал выдающимся авторитетом в теоретической биологии. После победы фашизма в Германии Дельбрюк эмигрировал в США. После войны к нему в аспирантуру поступил юный орнитолог Дж. Уотсон. Одна из самых ярких книг о науке — «Двойная спираль» Дж. Уотсона. Чего не хватало Ф. Крику в его попытках интерпретировать рентгенограммы ДНК, полученные Розалинд Франклин и Морисом Уилсоном? То, что это рентгенограмма спирали Крик понимал. А модель не получалась... Не хватало идеи, матричной концепции для построения двойной спирали. Эту идею и привез в Лондон Уотсон, не захотевший заниматься биохимией в Дании у Г. Калькара. Этим построением не умаляются достоинства и заслуги этих великих исследователей, а лишь подчеркивается определяющее значение идеи, или, обобщенно, мысли, без которой самые совершенные измерения оказываются бесполезными. А траектория мысли здесь от ранних аналогий организмов с кристаллами, работ цитологов по роли хромосом в наследственности, работ Т. Моргана по линейному расположению генов — к обобщающей концепции матричного синтеза Кольцова, переходящей от него посредством Тимофеева- Ресовского к Дельбрюку и Шредингеру, и от них к Уотсону и Крику - авторам одной из самых важных работ XX века. Дж. Уотсон не знал о Кольцове. Сойфер [6] пишет: «они, как рассказывал мне Уотсон в 1988 г., даже не слыхали об идее Кольцова». Это, конечно, не точно выраженная мысль — ученики Дельбрюка и читатели книги Шредингера, без сомнения, знали идеи Кольцова, но, увы, не знали, что это идеи Кольцова. Важно ли, что Кольцов полагал «наследственными молекулами» белки, а нуклеиновые кислоты в хромосомах считал лишь каркасом, на котором укреплены молекулы белков — генов? Не важно для общего принципа матричного воспроизведения наследственных текстов - идея равно значима для матричных молекул любой природы. Важно, как иллюстрация развития нового знания — иллюстрации сложности путей выяснения истины. Эта тема давно уже вошла в общие курсы биохимии. Великий американский химик Левин был чрезвычайным авторитетом в химии нуклеиновых кислот. (Замечательно! Мы знаем что Фебус Левин — великий американский химик, но... не могу удержаться! - он, «на самом деле» выпускник С.- Петербургской Военно-Медицинской Академии — там, среди прочего, он слушал лекции И. П. Павлова. Он эмигрировал в США в начале XX века... Там он вместе с Е. С. Лондоном открыл в составе ДНК дезоксирибозу и пр., и пр.) Однако, пользуясь бывшими в его время громоздкими методами количественного анализа, он ошибся - установил, что в нуклеиновых кислотах всегда содержатся одинаковые количества всех четырех нуклеиновых оснований — аденина, цитозина, гуанина и тимина. А отсюда сделал и вовсе неверный вывод — заявил, что нуклеиновые кислоты — это цепочки таких четверок — «тетрад». А раз так — никакого разнообразия, как в целлюлозе — следовательно, молекулы нуклеиновых кислот, говоря современным языком, не могут быть носителями наследственной информации. Нужен был хроматографический метод Цвета, нужны были выдающиеся по значению работы Чаргаффа, применившего ионнообменые хроматографиче- ские колонки для анализа нуклеотидного состава ДНК, чтобы опровергнуть тетрадную теорию. В «правилах Чаргаффа» содержится важнейший вывод - нуклеиновые кислоты имеют практически безграничную «информационную емкость» — возможно любое чередование нуклеиновых оснований в полимерной цепи. Более того, из этих правил следовала и двойная нить ДНК (поскольку А/Т и Г/Ц = 1), но это все — курс обычной биохимии, а я пишу биографический очерк... Вернемся к Кольцову в XIX век. До разрешения парадокса еще далеко. М. А. Мензбир - строгий и внимательный учитель. Он отнюдь не одобряет увлечения своего лучшего ученика какими-то молекулами. Сравнительная анатомия хордовых прекрасна, как евклидова геометрия. Миллионы лет эволюции наглядно прослеживаются в изменениях формы и функций костного скелета, кровеносных сосудов, нервной системы, кожных покровов. Интеллектуальный восторг - 8-я жаберная дуга акул превратилась в ходе эволюции в косточки внутреннего уха высших позвоночных! Поэму можно написать о том, как эволюционировала анатомия сердца с тем, чтобы в мозг поступала самая свежая кровь, насыщенная в легких кислородом. А для этого нужно четырехкамерное сердце млекопитающих... Н. К. делает глубокие исследования по сравнительной анатомии, но мысли о молекулах, роли отдельных ионов в жизни клетки, и самое главное, возможные механизмы, определяющие форму клетки, занимают его все более. Мензбир рекомендует Кольцова по окончании университета к оставлению «для подготовки к профессорскому званию». Это было в 1895 г. Кольцов, как было тогда принято, после защиты магистерской диссертации едет за границу. Работает в лабораториях Германии и на морских биостанциях в Италии. Его предмет мы бы сейчас назвали биофизикой. Его друзьями становятся знаменитые в дальнейшем биологи Р. Гольдшмидт, М. Гартман, О.
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату