начало набора.
Недостаток библиотеки generator
заключается в том, что она реализована с помощью продолжений (continuation
). Во всех имеющихся на сегодняшний день версиях Ruby это требует большого объема вычислений, поэтому, если итераций много, работа заметно замедляется.
8.4. Заключение
Мы подробно рассмотрели массивы, хэши и перечисляемые структуры в общем. Мы установили определенное сходство между массивами и хэшами, объясняемое тем, что в оба класса подмешан модуль Enumerable
. Но есть и различия. Мы показали, как преобразовать массив в хэш и наоборот, а также узнали несколько интересных способов расширить стандартное поведение.
Мы изучили различные методы обхода структур, например each_slice
и each_cons
, а также выяснили, как работают энумераторы и генераторы.
В главе 9 мы продолжим изучение высокоуровневых структур данных. Не все они входят в ядро Ruby или в стандартные библиотеки. Речь пойдет о множествах, стеках, очередях, деревьях и графах.
Глава 9. Более сложные структуры данных
Графическое представление данных абстрагирует банки памяти любого компьютера. Невообразимая сложность. Лучи света, протянувшиеся в не-пространстве разума, скопления и созвездия данных. Как гаснущие огни большого города.
Есть, конечно, более сложные и интересные структуры данных, чем массивы и хэши. Некоторые из тех, с которыми мы познакомимся в этой главе, имеют прямую или косвенную поддержку в Ruby, другие приходится программировать самостоятельно. К счастью, Ruby упрощает создание нестандартных структур данных.
Математические множества можно, как мы видели, моделировать с помощью массивов. Но в последних версиях Ruby есть также класс Set
, который хорошо поддерживает эту структуру.
Стеки и очереди — две весьма распространенные в информатике структуры данных. В первом издании этой книги им было уделено чрезмерно много внимания. Для тех, кого интересуют общие вопросы, я оставил кое-какой материал; для остальных есть немало великолепных книг по структурам данных и алгоритмам.
Деревья полезны для сортировки, поиска и просто представления иерархических данных. Мы рассмотрим двоичные деревья и сделаем несколько замечаний о деревьях более высокой степени.
Но самыми простыми структурами являются множества. С них мы и начнем.
9.1. Множества
Мы уже видели, что некоторые методы класса Array
позволяют использовать массивы для представления математических множеств. Однако для написания более строгого и компактного кода в Ruby есть также класс Set
, который скрывает от программиста большую часть деталей реализации.
Чтобы получить в свое распоряжение класс Set
, достаточно написать:
require 'set'
При этом также добавляется метод to_set
в модуль Enumerable
, так что любой перечисляемый объект становится возможно преобразовать в множество.
Создать новое множество нетрудно. Метод []
работает почти так же, как для хэшей. Метод new
принимает в качестве необязательных параметров перечисляемый объект и блок. Если блок задан, то он выступает в роли «препроцессора» для списка (подобно операции map
).
s1 = Set[3,4,5] # В математике обозначается {3,4,5}.
arr = [3,4,5]
s2 = Set.new(arr) # То же самое.
s3 = Set.new(arr) {|x| x.to_s } # Множество строк, а не чисел.
9.1.1. Простые операции над множествами
Для объединения множеств служит метод union
(синонимы |
и +
):
x = Set[1,2,3]
y = Set[3,4,5]
а = x.union(y) # Set[1,2,3,4,5]
b = x | y # То же самое.
с = x + y # То же самое.
Пересечение множеств вычисляется методом intersection
(синоним &
):
x = Set[1,2,3]
y = Set[3,4,5]
а = x.intersection(y) # Set[3]
b = x & y # То же самое.
Унарный минус обозначает разность множеств; мы обсуждали эту операцию в разделе 8.1.9.
diff = Set[1,2,3] - Set[3,4,5] # Set[1,2]
Принадлежность элемента множеству проверяют методы member?
или include?
, как для массивов. Напомним, что порядок операндов противоположен принятому в математике.
Set[1,2,3].include?(2) # true
Set[1,2,3].include?(4) # false
Set[1,2,3].member?(4) # false
Чтобы проверить, является ли множество пустым, мы вызываем метод empty?
, как и