австралопитеков. Это – эволюционные области, для которых наши зоологические соглашения о названиях никогда не предназначались (
Принятие одного из названий дает нам возможность более конструктивно обсудить, почему мозг внезапно начал увеличиваться. Как бы мы измерили увеличение мозга гоминида и начертили бы график зависимости среднего размера мозга от геологического времени? Совершенно понятно, в каких единицах мы будем измерять время: в миллионах лет. С размером мозга сложнее. Ископаемые черепа и слепки позволяют нам оценивать размер мозга в кубических сантиметрах и достаточно легко преобразовать его в граммы. Но абсолютный размер мозга не обязательно служит мерой, которая нам нужна. У слона мозг больше, чем у человека, но не только тщеславие заставляет нас думать, что мы мозговитее, чем слоны. Мозг тиранозавра не был намного меньшим, чем наш, но все динозавры расцениваются как тупые существа с маленьким мозгом. Нас делает более умными то, что у нас больший мозг для нашего размера, чем у динозавра. Но что именно означает «для нашего размера»?
Есть математические методы корректировки абсолютного размера и выражение размера мозга животного в зависимости от того, насколько большой ему «нужен» размер тела. Это – тема, достойная отдельного рассказа, и Homo habilis, умелец, стоящий одновременно на обеих сторонах мозгового «Рубикона», расскажет его со своей ненадежной точки зрения.
Рассказ Умельца
Мы хотим оценить, каков мозг у определенного существа, такого как Homo habilis: больше или меньше, чем он «должен» быть, если учесть размеры тела животного. Мы принимаем (немного неохотно в моем случае, но я соглашусь с этим), что у больших животных должен быть большой мозг, а у маленьких животных – маленький. Делая поправку на это, мы все еще хотим знать, являются ли некоторые виды более «мозговитыми», чем другие. Итак, как мы делаем поправку на размер тела? Нам необходимо разумное основание для того, чтобы вычислить ожидаемый размер мозга животного в зависимости от размера его тела, так, чтобы мы могли решить, больше или меньше реальный мозг определенного животного, чем ожидаемый.
В нашем путешествии в прошлое мы, как оказалось, столкнулись с проблемой, связанной с мозгом, но подобные вопросы могут возникнуть относительно любой части тела. Имеют ли некоторые животные большие (или меньшие) сердца, или почки, или лопатки, чем они должны иметь при их размерах? Если так, то можно было бы предположить, что их образ жизни диктует особый размер сердца (почки или лопатки). Как мы узнаем, какой размер «должен» быть у какой-либо части животного, при условии, что мы знаем общий размер его тела? Заметьте, что «должен быть», не означает «необходимо иметь по функциональным причинам». Это означает, «можно было бы ожидать, сравнивая с сопоставимыми животными». Так как это – «Рассказ Умельца», и так как самый удивительный признак Умельца – его мозг, мы продолжим использовать мозг при обсуждении этой проблемы. Уроки, которые мы усвоим, будут более общими.
Мы начинаем, вычерчивая график разброса массы мозга относительно массы тела для большого количества видов. Каждый символ на графике ниже (сделанном моим коллегой, выдающимся антропологом Робертом Мартином (Robert Martin)) представляет один живой вид млекопитающих – их 309 в диапазоне от наименьшего до наибольшего. В случае если Вас заинтересует, Homo sapiens - отметка со стрелкой, а та, что рядом с нами – дельфин. Толстая черная линия, протянувшаяся среди отметок, является прямой, которая, согласно статистическому вычислению, дает наилучшее совпадение по всем отметкам (
Небольшое затруднение, смысл которого станет понятен через мгновение, состоит в том, что график работает лучше, если мы сделаем значения обеих шкал логарифмическими, и именно так этот график и был построен. Мы откладываем логарифм массы мозга животного в зависимости от логарифма массы его тела. Логарифмический означает, что равные отрезки вдоль нижней части графика (или равные отрезки вдоль вертикальной оси) представляют собой степени некоторого определенного числа, десяти, а не приращение числа, как в обычном графике. Основание десять удобно тем, что мы можем рассматривать логарифм как количество нолей в числе. Если Вы должны умножить массу мыши на миллион, чтобы получить массу слона, это значит, что Вы должны добавить шесть нолей к массе мыши: Вы должны добавить шесть к логарифму первого, чтобы получить логарифм второго. На полпути между ними – в логарифмическом масштабе три ноля – находится животное, которое весит в тысячу раз больше, чем мышь, или одну тысячную веса слона: возможно, человек. Использование круглых чисел, таких как тысяча и миллион, должно сделать интерпретацию легкой. «Три с половиной ноля» лежат где-то между тысячей и десятью тысяч. Заметьте, что «на полпути между», когда мы считаем ноли, совсем не одно и то же, что «на полпути между», когда мы считаем граммы. Это все делается автоматически благодаря отысканию логарифмов чисел. Логарифмические величины служат для различного рода интерпретаций простых арифметических величин, которые полезны для различных целей.
Есть, по крайней мере, три серьезных основания для того, чтобы использовать логарифмический масштаб. Во-первых, это позволяет отобразить карликовую землеройку, лошадь и голубого кита на одном и том же графике, не нуждаясь в ста ярдах бумаги. Во-вторых, это помогает отмечать мультипликативные признаки, что иногда мы и делаем. Мы не просто хотим знать, насколько большой у нас мозг, а каков он по отношению к размерам нашего тела. Нам интересно узнать, что наш мозг, скажем, в шесть раз больше, чем он должен быть. Такие мультипликативные суждения могут быть вынесены при непосредственном прочтении логарифмического графика: таковы логарифмические средства. Третья причина для предпочтения логарифмических величин требует немного больше времени для объяснения. Один подход состоит в том, чтобы отобразить разброс наших значений вдоль прямых линий вместо кривых, но есть кое- что еще. Позвольте мне попытаться объяснить это моему собрату, неспециалисту в числах.
Предположите, что Вы берете объект, такой как сфера или куб, или действительно мозг, и раздуваете его равномерно таким образом, чтобы это была все та же форма, но в десять раз больше. В случае сферы это означает увеличение диаметра в десять раз. В случае куба или мозга это означает десятикратную ширину (и высоту, и длину). Во всех этих случаях пропорционального увеличения, что случится с объемом? Он не будет в десять раз большим – он будет в тысячу раз большим! Вы можете доказать это для куба, если представите себе укладывание кубиков сахара. То же самое относится к равномерному увеличению любой формы, которую Вы захотите. Умножьте длину на десять и, если форма не изменяется, Вы автоматически умножаете объем в тысячу раз. В частном случае десятикратного увеличения это эквивалентно добавлению трех нолей. В общем, объем пропорционален третьей степени длины и ее логарифму, умноженному на три.
Мы можем сделать те же вычисления для площади поверхности. Но площадь увеличивается пропорционально второй степени длины, а не третьей. Недаром возведение во вторую степень называется квадратом, в то время как возведение в третью – кубом. Объем куска сахара определяет его количество и сколько он стоит. Но то, как быстро он растворится, будет зависеть от площади его поверхности (не простое вычисление, потому что когда он растворяется, площадь поверхности будет сокращаться медленнее, чем объем оставшегося сахара). Когда Вы увеличиваете объем объекта, удваивая его длину (ширину, и т.д.), Вы