образом их содержимое не сталкивается друг с другом, если химик не желает этого, когда добавляет порцию из одной бутылки к порции из другой. Вы можете сказать, что полки в химической лаборатории также предоставляют огромный ассортимент потенциальных химических реакций, которые могут возникнуть. И снова большая часть из них не происходит.

Но представьте себе, что Вы берете все бутылки со всех полок и выливаете их в один чан, наполненный водой. Нелепый акт научного вандализма, все же такой чан в значительной степени являет собой то, что происходит в живой клетке (Хотя, по общему признанию, с большим количеством мембран, которые усложняют картину.). Сотни компонентов тысяч потенциальных химических реакций не удерживаются в отдельных бутылках в ожидании требуемых реакций друг с другом. Вместо этого они все время смешиваются в одном общем пространстве. Но, тем не менее, они ожидают, в основном не вступая в реакцию, пока этого не требуется, как будто находятся в реальных бутылках. Нет никаких реальных бутылок, но есть ферменты, работающие как автоматизированные антрепренеры, или мы могли бы даже назвать их автоматизированными лаборантами. Ферменты способны к распознаванию, почти так же, как радиоприемник, когда ловит отдельные радиостанции, игнорируя сотни других сигналов, одновременно бомбардирующих его антенну неразберихой несущих частот.

Предположим, что есть важная химическая реакция, в которой компонент А объединяется с компонентом B, чтобы образовать продукт Z. В химической лаборатории мы добиваемся этого, взяв с одной полки бутылку с этикеткой А, а с другой полки бутылку с этикеткой B, смешав их содержимое в чистой колбе и обеспечив другие необходимые условия, такие как высокая температура или взбалтывание. Мы добиваемся определенной реакции, которая нам нужна, взяв только две бутылки с полки. В живой клетке много молекул А и много молекул B, плавающих в окружающей жидкости среди огромного разнообразия молекул, где они могут встретиться, но даже при встрече объединяются редко. В любом случае, их встреча не более вероятна, чем тысячи других возможных комбинаций. Теперь мы вводим фермент, названный abzase, который конкретно приспособлен, чтобы катализировать реакцию A+B=Z. В клетке есть миллионы молекул abzase, и каждая действует как автоматизированный лаборант. Каждый лаборант abzase захватывает одну молекулу, не с полки, но свободно плавающую в клетке. Затем он захватывает дрейфующую молекулу B. Он твердо удерживает А своими захватами так, чтобы тот был обращен в определенном направлении. И так же твердо он удерживает B, чтобы он примыкал к A только в правильном положении и ориентации, чтобы скрепить с A и создать Z. Фермент также может делать другие вещи – аналогично лаборанту-человеку уметь обращаться с мешалкой или зажигать Бунзеновскую горелку. Он может образовать временное химическое соединение с A или B, обмениваясь атомами или ионами, которые, в конечном счете, возвращаются, таким образом, получается, что фермент остается таким же, как был, катализатором. В результате всего этого в определенной формы «захватах» молекулы фермента образуется новая молекула Z. Тогда лаборант выпускает новый продукт Z в жидкость и ждет проплывающий мимо другой компонент А, после чего захватывает его, и цикл возобновляется.

Если бы не было никакого автоматизированного лаборанта, то свободно плавающий A иногда врезался бы в свободно плавающий B при правильных условиях образования соединения. Но такое случайное событие было бы редким, не более обычным, чем случайные столкновения с большим количеством других потенциальных партнеров, в которых либо A, либо B могли бы участвовать. Возможно, столкновение с C и создание Y. Или B мог бы врезаться в D и образовать X. Благодаря случайному медленному перемещению все время создается небольшое количество Y и X. Но все зависит от присутствия лаборанта, фермента abzase. В присутствии abzase Z ставится на поток (с точки зрения клетки) в промышленных количествах: фермент обычно спонтанно увеличивает норму реакции в пределах от миллиона до триллиона раз. Если бы был введен другой фермент, acyase, то A соединился бы с C вместо B, снова же на скорости быстро мчащегося ленточного конвейера, создавая щедрый запас Y. Это все те же молекулы А, о которых мы говорили, не ограниченные бутылкой, но свободно объединяющиеся с B или с C, в зависимости от того, какой фермент присутствует для их захвата.

Скорости выработки Z и Y будут, поэтому, зависеть, кроме всего прочего, от того, сколько каждых из двух конкурирующих лаборантов, abzase и acyase, плавает в клетке. А это зависит от того, какой из двух генов включен в ядре клетки. Однако все немного сложнее: даже если молекула abzase присутствует, она может быть инактивирована. Один способ, которым это может случиться, состоит в том, что появляется другая молекула и занимает активную «впадину» фермента. Это – как если бы на автоматизированного лаборанта временно надели наручники. Наручники напоминают мне, между прочим, необходимость исполнить ритуал, предупреждающий что, как всегда бывает с метафорами, есть риск, что «автоматизированный лаборант» может ввести в заблуждение. У молекулы фермента фактически нет рук, чтобы их протягивать и захватывать компоненты, такие как A, уже не говоря о надевании наручников. Вместо этого у него есть специальные зоны на поверхности, к которой A, скажем, обнаруживает сродство, или из-за аккуратного физического соответствия впадине определенной формы, или еще из-за какой-то неясной химической особенности. И это сродство может быть временно сведено на нет способами, которые напоминают преднамеренное переключение выключателя.

Большинство молекул фермента – механизмы особого назначения, которые делают только один продукт: скажем, сахар или жир; пурин или пиримидин (стандартные блоки ДНК и РНК), или аминокислоты (двадцать из них – стандартные блоки природных белков). Но некоторые ферменты больше похожи на программируемые станки, требующие перфоленту, на которой указано, что им делать. Самые выдающийся среди них – рибосомы (Кратко объясненные в «Рассказе Taq».), большие и сложные станки, построенные и из белка и из РНК, которые сами создают белки. Аминокислоты, стандартные блоки белков, уже сделанные ферментами специального назначения и плавающие повсюду в клетке, могут быть захвачены рибосомой. Перфолентой служит РНК, конкретно «информационная РНК» (иРНК). Информационная лента, сама скопировавшая информацию с ДНК в геноме, вводит данные в рибосому и, когда она проходит через «считывающую головку», соответствующие аминокислоты собираются в белковую цепь в порядке, заданном лентой, использующей генетический код.

То, как эта спецификация работает, известно, и это замечательно. Есть набор маленьких транспортных РНК (тРНК), каждая длиной приблизительно 70 оснований. Каждая из тРНК избирательно присоединяется к одному и только одному из двадцати видов обычных аминокислот. На другом конце молекулы тРНК находится «антикодон», триплет, точно дополняющий короткую последовательность иРНК (кодон), который определяет специфическую аминокислоту согласно генетическому коду. Когда лента иРНК движется через считывающую головку рибосомы, каждый кодон иРНК связывается с тРНК, имеющей подходящий антикодон. Это заставляет аминокислоту, свисающую с другого конца тРНК, выстраиваться в ряд в положении, определенном «антрепренером», прикрепляясь к растущему концу формирующегося белка. Как только аминокислота прикрепляется, тРНК уходит на поиски новой молекулы аминокислоты предпочитаемого типа, в то время как лента иРНК медленно продвигается вперед в другую позицию. Таким образом, процесс продолжается, и шаг за шагом формируется белковая цепь. Удивительно, но одна аппаратная лента иРНК может справиться с несколькими рибосомами одновременно. Каждая из этих рибосом перемещает свою считывающую головку вдоль различных частей ленты, и каждая формирует свою собственную копию вновь создаваемой цепи белка.

Каждая новая белковая цепь заканчивается, когда иРНК, вводящая свои данные в рибосому, полностью проходит считывающую головку этой рибосомы, и белок отделяется. Он сворачивается в сложную трехмерную структуру, форма которой определяется, по законам химии, последовательностью аминокислот в цепи белка. Сама эта последовательность обусловлена порядком кодовых символов вдоль иРНК. И этот порядок, в свою очередь, определяется комплементарной последовательностью символов вдоль ДНК, которая составляет основную базу данных клетки.

Закодированная последовательность ДНК, поэтому, управляет тем, что происходит в клетке. Она устанавливает последовательность аминокислот в каждом белке, которая определяет трехмерную форму белка, которая в свою очередь придает этому белку его особые ферментативные свойства. Важно, что контроль может быть при этом косвенным, как мы видели в «Рассказе Мыши», гены определяют, какие другие гены должны включиться и когда. Большинство генов в любой клетке выключено. Поэтому из всех реакций, которые могут произойти в «чане, полном разнородных компонентов», в любой момент фактически происходит лишь одна или две: те, чьи специфические «лаборанты» активны в клетке.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату