нас есть кислород для дыхания, состоит в том, что большая часть углерода в мире связана под землей. Мы сжигаем все это на свой страх и риск.

Атомы кислорода всегда присутствовали в ранней атмосфере, но не высвобождались в виде газа. Они были связаны в соединениях, таких как углекислый газ и вода. Сейчас углерод главным образом заключен в живых телах или – в намного большем количестве – в горных породах, таких как мел, известняк и уголь, которые происходят из останков некогда живых тел. Во времена Кентербери эти же атомы углерода главным образом содержались бы в атмосфере в виде составных газов, таких как углекислый газ и метан. Азот, ныне основной атмосферный газ, был бы в восстановительной атмосфере соединен с водородом в виде аммиака.

Опарин и Холдейн поняли, что восстановительная атмосфера благоприятна для самопроизвольного синтеза простых органических соединений. Вот собственные слова Холдейна, которые я цитирую из его знаменитой заключительной фразы:

Теперь, когда ультрафиолетовые лучи оказали действие на смесь воды, углекислого газа, и аммиака, получено многообразие органических веществ, включая сахар и, очевидно, некоторые из материалов, из которых построены белки. Этот факт был продемонстрирован Бэйли (E. C. C. Baly) и его коллегами в лаборатории в Ливерпуле. В нынешнем мире такие вещества разлагаются – то есть разрушаются микроорганизмами. Но до возникновения жизни они должны были накапливаться, пока примитивные океаны не достигли консистенции горячего разбавленного бульона.

Это было написано в 1929 году, больше чем за 20 лет до часто упоминаемого эксперимента Миллера и Юри (H. C. Urey), который, как можно было бы понять из сообщения Холдейна, был своего рода повторением эксперимента Бэйли. Однако Э. Ч. Бэйли не изучал происхождение жизни. Его интересовал фотосинтез, и его целью было синтезировать сахар с помощью ультрафиолетовых лучей, направленных в воду, содержащую растворенный углекислый газ, в присутствии катализатора, такого как железо или никель. Именно Холдейн, а не сам Бэйли с его отличительным блеском (Сэр Питер Медавар описал Хэдлайна как самого умного человека, которого он когда-либо знал.) ожидал чего-то замечательного, вроде эксперимента Миллера-Юри, и считал его возвращением к работе Бэйли.

Миллер под руководством Юри взял две колбы, одна выше другой, связанных двумя трубками. Нижняя колба содержала нагретую воду, представляя первобытный океан. Верхняя колба содержала модель первобытной атмосферы (метан, аммиак, водяной пар и водород). Через одну из этих двух трубок пар поднимался от нагретого «океана» в нижней колбе и попадал в «атмосферу» в верхней колбе. Другая трубка шла обратно вниз, из «атмосферы» в «океан». По пути она проходила через искровую камеру («молнии») и камеру охлаждения, где пар конденсировался, формируя «дождь», который пополнял «океан».

Всего через неделю этого подобия рециркуляции океан стал желто-коричневым, и Миллер проанализировал его содержание. Как предсказал Холдейн, он стал бульоном из органических соединений, включая не менее чем семь аминокислот, непременных строительных блоков белков. Среди этих семи были три – глицин, аспарагиновая кислота и аланин – из списка 20, обнаруженных в живых существах. Более поздние эксперименты по этой теме, но с заменой углекислого или угарного газа на метан, достигли похожих результатов. Мы можем сделать разумный вывод, что биологически важные маленькие молекулы, включая аминокислоты, сахара и, в немалой степени, стандартные блоки ДНК и РНК, способны самопроизвольно образовываться при лабораторном моделировании различных версий первобытной Земли Опарина/Холдейна.

До Опарина и Холдейна мыслители, рассуждающие о происхождении жизни, предполагали, что первые организмы должны были являться какой-либо разновидностью растений, возможно, зеленых бактерии. Люди привыкли к идее, что жизнь зависит от фотосинтеза, производства органических соединений, запускаемого солнечным светом, сопровождаемого выделением кислорода. Опарин и Холдейн со своей восстановительной атмосферой подумали о том, что растения вышли на сцену позже. Ранняя жизнь возникла в море существовавших ранее органических соединений. Для еды был бульон, и не было потребности в фотосинтезе – по крайней мере, пока бульон не закончился.

Для Опарина жизненно важным шагом было возникновение первой клетки. И, разумеется, у клеток, как и организмов, есть важное свойство: они никогда не возникают самопроизвольно, а всегда от других клеток. Было простительно отождествлять с появлением жизни возникновение первой «клетки» (метаболизатора), а не первого «гена» (репликатора), как буду делать я. Среди более современных теоретиков с тем же уклоном выдающийся теоретический физик Фримен Дайсон (Freeman Dyson) осознавал и отстаивал это. Большинство современных теоретиков, включая Лесли Оргела (Leslie Orgel) в Калифорнии, Манфреда Эйгена (Manfred Eigen) и его коллег в Германии, и Грэма Кэрнс-Смита в Шотландии – более одинокие индивидуалисты, но это ни в коем случае не перечеркивает первостепенное значение самокопирования, и хронологически, и в отношении его центральности: по- моему, это справедливо.

На что была бы похожа наследственность без клетки? Разве это не проблема курицы-и-яйца? Конечно, да, если мы соглашаемся с тем, что для наследственности требуется ДНК, ДНК не может быть реплицирована без многочисленных вспомогательных молекул, включая белки, которые могут быть созданы только с помощью закодированной информации ДНК. Но только из того, что ДНК – основная самореплицирующая молекула, которую мы знаем, не следует, что она является единственной, которую можно себе представить, или единственной, которая когда-либо существовала в природе. Грэм Кэрнс- Смит аргументировано доказал, что первоначальные репликаторы были неорганическими минеральными кристаллами, с более поздней узурпацией ДНК, вступившей в главную роль, когда жизнь эволюционировала до пункта, где такой переход под генетический контроль стал возможным. Я не буду приводить здесь его доводы, частично потому что я уже сделал свою лучшую попытку в «Слепом часовщике», но также и по более веской причине. Кэрнс-Смит приводит наиболее ясные из прочитанных мною доводов, что самовоспроизведение имело первостепенное значение, и ДНК должна была иметь какого-либо предшественника, природа которого неизвестна, с оговоркой, что тот демонстрировал истинную наследственность. Я считаю позором, что эта неопровержимая часть его аргументов стала связанной в общественном сознании с его более спорными и спекулятивными доводами в пользу минеральных кристаллов в качестве предшественников.

Я не имею ничего против минеральной теории кристаллов, и я разъяснял ее ранее, но что я действительно хочу подчеркнуть, это первенствующую роль репликатора, и есть большая вероятность, что была более поздняя передача управления к ДНК от некоторого предшественника. Я могу подробнее остановиться на этом вопросе, преднамеренно перейдя в этой книге к различным специфическим теориям того, каким мог быть тот предшественник. Каковы бы ни были ее основные достоинства как первоначального репликатора, РНК, конечно, лучший кандидат, чем ДНК, и она была взята за образец предшественника многими теоретиками в их так называемом «мире РНК». Чтобы представить теорию мира РНК, я должен отвлечься на ферменты. Если репликатор – звезда жизненного шоу, то ферменты играют одну из главных ролей, более чем просто второстепенную роль.

Жизнь крайне зависит от виртуозной способности ферментов катализировать биохимические реакции довольно вычурным способом. Когда я впервые узнал о ферментах в школе, расхожее (и, на мой взгляд, ошибочное) мнение, что наука должна преподаваться на основе обыденных примеров, подразумевало, что мы плевали в воду, чтобы продемонстрировать способность слюнного фермента амилазы переваривать крахмал и образовывать сахар. От этого мы получили впечатление, что фермент похож на агрессивную кислоту. Биологические стиральные порошки, которые используют ферменты, чтобы вываривать грязь из одежды, создают такое же впечатление. Но это – разрушительные ферменты, служащие для расчленения больших молекул на их меньшие составляющие. Конструктивные ферменты вовлечены в синтез больших молекул их меньших компонентов, и они делают это, ведя себя как «автоматизированные антрепренеры», и я объясню почему.

Внутренность клетки содержит раствор из тысяч различного рода молекул, атомов и ионов. Они могли бы попарно объединяться друг с другом почти бесконечным числом различных способов, но в основном они этого не делают. Таким образом, есть огромный ассортимент потенциальных химических реакций, которые могут возникнуть в клетке, но большая часть из них не происходит. Помните об этом, размышляя над следующим. В химической лаборатории на полках есть сотни бутылок, все надежно закупоренные, таким

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату