пальцах передней и задней конечности. Это веерное расположение, унаследованное от более очевидного веера плавников наших рыбоподобных предков, не предоставляет собой простой линейной зависимости Hox. Даже в этом случае Hox-гены вовлечены в развитие конечностей позвоночных.

По аналогии не было бы удивительно, если бы Hox-гены также экспрессировались в лучах морской звезды или офиуры (и даже морских ежей можно представить как о морских звезд, лучи которых завернулись вверх в пятиконечный свод, соединились концами и застегнули по бокам «молнии»). Кроме того, лучи морской звезды, в отличие от наших рук или ног, действительно являются последовательно модульными на своем протяжении. Трубчатые ножки со всей связанной с ними водопроводной системой являются структурными единицами, которые повторяются в двух параллельных рядах вдоль каждого луча: как раз то, что нужно для экспрессирования Hox-генов! Лучи офиур даже выглядят и ведут себя, как пять червей.

T. Г. Хаксли упомянул «большую трагедию науки – сражение красивой гипотезы уродливым фактом». Истинные факты Hox-генов иглокожих, возможно, не уродливы, но они не следуют за симпатичным примером, который я только что предложил. Происходит нечто другое, что имеет свою собственную, довольно удивительную красоту. Личинки иглокожего – крошечные, двусторонне-симметричные, плавающие в планктоне животные. Пятиконечное, радиально симметричное, живущее на дне взрослое животное не развивается как трансформация личинки. Вместо этого оно возникает как крошечный миниатюрный взрослый в теле личинки, который растет, пока, в конечном счете, остальная часть личинки не отбрасывается. Hox-гены экспрессируются в правильном линейном порядке, но не вдоль каждого луча. Вместо этого порядок экспрессирования следует по приблизительно круглому маршруту вокруг маленького взрослого. Если мы представили себе ось Hox как «червя», не существует пяти «червей», по одному для каждого луча. Есть единственный «червь», скрученный вокруг внутренней части личинки. Передний конец «червя» выращивает луч номер 1, задний конец «червя» выращивает луч номер 5. В таком случае, гомеотические мутации у морской звезды, как можно было бы ожидать, вырастят слишком много лучей. И без сомнения, мутантная морская звезда с шестью лучами известна и была зарегистрирована в книге Бэтсона. Есть также некоторые виды морских звезд, у которых намного большее количество лучей, и они, по-видимому, эволюционировали от гомеотических мутантных предков.

Hox-гены не были найдены ни у растений, ни у грибов, ни у одноклеточных организмов, обычно называемых простейшими. Но теперь мы подошли к трудности в терминологии, с которой необходимо справиться прежде, чем мы двинемся дальше. «Hox» был придуман как сокращение от «гомеобокс» (homeobox), но Hox-гены не синонимичны с гомеобокс-генами: они – их подмножество. У растений и грибов действительно есть гомеобокс-гены, но у них нет Hox-генов (Растения и грибы должны иметь системы контролирующих генов и химических градиентов, чтобы превратиться в правильную форму. MADS-box гены определяют эмбриологию цветов и могут произвести гомеотические мутации в цветах таким же образом, как Hox-гены  у животных.).

«Гомео» происходит от «гомеозиса» Бэтсона, а «бокс» указывает на блок из 180 кодовых знаков, который есть у всех генов, известных как гомеобокс-гены, где-нибудь на их протяжении. Сам гомеобокс – это диагностическая последовательность из 180 кодовых знаков, а «гомеобокс-ген» – ген, который содержит последовательность гомеобокс где-нибудь на своем протяжении. Название Hox используется не для всех гомеобокс-генов, а только для линейных множеств генов, которые определяют положение вдоль тела животного и которые оказались гомологичными почти у всех животных.

Hox-семья гомеобокс-генов была первой из обнаруженных, но теперь известно много родственных семей. Например, существует семья генов под названием ParaHox, которая была сначала четко установлена у ланцетников, но которая, кроме того, встречается у всех животных, кроме (пока) гребневиков и губок. Кажется, что ParaHox-гены – «кузены» Hox-генов, в смысле, что они им соответствуют и расположены в том же порядке, что и Hox-гены. Они, конечно, возникли при дупликации от одного и того же предкового набора генов, что и Hox-гены. Другие гомеобокс-гены более отдаленно связаны с Hox и ParaHox, но формируют собственные семьи. Семья Pox обнаружена у всех животных. Особенно известен член этой семьи – Pax6, который соответствует гену, известному как ey у дрозофилы. Я уже упомянул, что Pax6 ответственен за приказ клеткам создавать глаза. Тот же ген делает глаза у столь разных животных, как дрозофила и мышь, даже притом, что созданные глаза у этих двух животных радикально различны. Подобно Hox-генам, Pax6 не сообщает клеткам, как сделать глаз. Он только говорит им, что здесь место, чтобы сделать глаз.

Довольно похожий пример – маленькая семья генов, названных tinman. Снова же, гены tinman присутствуют и у дрозофилы, и у мыши. У дрозофилы гены tinman ответственны за приказ клеткам делать сердце, и они обычно экспрессируются только в надлежащем месте, чтобы создать сердце дрозофилы. Как мы теперь можем ожидать, гены tinman также участвуют в приказах клеткам мыши создавать сердце в надлежащем для него месте.

Весь набор гомеобокс-генов представляет собой очень большое множество, разделенное на семейства и подсемейства, так же как сами животные разделены на семейства и подсемейства. Это похоже на случай гемоглобина, который мы исследовали в «Рассказе Миноги». Там мы узнали, что человеческий альфа-глобин действительно является более близким кузеном, скажем, альфа-глобина ящерицы, чем кузеном человеческого бета-глобина, который, в свою очередь, более близкий кузен бета глобина ящерицы. Точно так же человеческий tinman – более близкий кузен tinman плодовой мушки, чем человеческого Pax6. Есть возможность построить очень полное генеалогическое дерево гомеобокс-генов, которое существует бок о бок с генеалогическим деревом содержащих их животных. Оба генеалогических дерева одинаково обоснованны. Оба – настоящие родословные деревья, сформированные событиями расколов, которые случались в особые моменты геологической истории. В случае генеалогических деревьев животных события расколов представляют собой видообразования. В случае генеалогических деревьев гомеобогс-генов (или генов глобина), события расколов – дупликации гена в геномах.

Дерево гомеобокс-гена животных раскалывается на два больших класса, на AntP и PRD классы. Я не буду обстоятельно объяснять, что обозначают эти сокращения, потому что оба являются упрямо сбивающими с толку. Класс PRD включает Pax-гены и различные другие подклассы. Класс AntP включает Hox и ParaHox, и тоже различные другие подклассы. В дополнение к этим двум большим классам гомеобокс- генов животных существуют различные, более отдаленно связанные гомеобокс-гены, которые (ошибочно) называют «дивергентными». Они обнаружены не только у животных, но и у растений, грибов, а также у «простейших».

Только животные имеют истинные Hox-гены, и они всегда используются для одной и той же цели – чтобы установить информацию о местоположении внутри тела, независимо от того, разделено ли тело четко на дискретные сегменты. Хотя Hox-гены еще не были найдены у губок и гребневиков, это не означает, что такого не случится. Было бы не удивительно обнаружить, что они есть у всех животных. Это воодушевило бы моих коллег Джонатана Слэка (Jonathan Slack), Питера Холланда и Кристофера Грэма (Christopher Graham), тогда всех из Оксфорда, предложивших новое определение самого понятия «животное». До настоящего времени животные были определены в противоположность растениям, довольно неудовлетворительным негативным способом. Слэк, Холланд и Грэм предложили позитивный, особый критерий, имеющий результатом объединение всех животных и исключающий всех неживотных, таких как растения и простейшие. История с Hox показывает, что животные – не очень пестрая, несвязанная смесь типов, каждый со своим собственным фундаментальным планом тела, приобретенным и сохраненным в одинокой изоляции. Если Вы забудете морфологию и посмотрите только на гены, выяснится, что все животные – незначительные вариации на очень специфическую тему. Какое удовольствие быть зоологом в такое время.

Рассказ Коловратки

Блестящий физик-теоретик Ричард Фейнман, как известно по слухам, сказал: «Если Вы думаете, что Вы понимаете квантовую теорию, Вы не понимаете квантовую теорию». Заманчива аналогия эволюциониста: «Если Вы думаете, что понимаете пол, Вы не понимаете пол». Три современных дарвиниста, от которых, я полагаю, мы можем наибольшему научится – Джон Мэйнард Смит (John Maynard

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату