Рис. 6.6

Другие дислокации, которые часто встречаются в кристаллах, называются спиральными. Их схемы показаны на рис. 6.7. Здесь решетка разбита на два блока, один из которых своей частью как бы соскользнул на один период по отношению к соседнему. Наибольшие искажения сосредоточены около оси. Область, примыкающая к этой оси, и называется спиральной дисклока-цией.

Мы лучше поймем, в чем сущность искажения, если рассмотрим схему на том же рисунке, изображающую две соседние атомные плоскости по одну и другую сторону плоскости разреза (рис. 6.7, б). По отношению к трехмерному рисунку это вид на плоскости справа. Ось спиральной дислокации та же, что и на трехмерном рисунке. Сплошными линиями показана плоскость правого, пунктирными - левого блока. Черные точки расположены к читателю ближе, чем белые. Как видно из схемы, спиральная дислокация представляет собой иной тип искажения, отличный от простого. Лишнего ряда атомов здесь нет. Искажение состоит в том; что вблизи 'оси дислокации атомные ряды меняют своих ближайших соседей, а именно изгибаются и подравниваются к соседям, находящимся этажом ниже.

Рис. 6.7

Почему эта дислокация называется спиральной? Представьте себе, что вы шагаете но атомам (предварительно уменьшившись до субатомного размера) и поставили перед собой цель обойти кругом ось дислокации. Нетрудно видеть, что, начав свое путешествие с самой нижней плоскости, вы после каждого оборота будете попадать этажом выше и в конце концов выйдете на верхнюю поверхность кристалла так, как если бы вы шли по спиральной лестнице. На нашем рисунке подъем снизу происходил против часовой стрелки. Если бы сдвиг блоков был обратным, то путешествие происходило бы по часовой стрелке.

Теперь мы подошли к ответу на вопрос о том, как происходит пластическая деформация,

Предположим, что мы хотим сдвинуть верхнюю половинку кристалла по отношению к нижней на одно межатомное расстояние. Вы видите, что для этого придется перекатить друг через друга все ряды атомов, расположенные в плоскости сдвига. Совершенно иначе обстоит дело при действии силы сдвига на кристалл с дислокацией.

На рис. 6.8 показана плотная упаковка шаров (показаны только крайние шары атомных рядов), содержащая простую дисклокацию. Начнем сдвигать вправо верхний блок по отношению к нижнему. Чтобы легче было разобраться в происходящем, мы пометили шары цифрами; шары сжатого слоя помечены цифрами со штрихами. В какой-то исходный момент 'трещина' была между рядами 2 и 3; сжатыми были ряды 2' и 3'.

Рис. 6.8

Как только подействует сила, ряд 2 сдвинется в трещину; теперь шар 3' может 'вздохнуть свободно', зато придется сжаться шару 1'. Что же произошло? Вся дисклокация передвинулась влево, и ее движение будет таким же образом продолжаться до тех пор, пока дислокация не 'выйдет' из кристалла. Результатом будет сдвиг на один ряд атомов, т. е. такой же результат, как при сдвиге идеального кристалла.

Не приходится доказывать, что дислокационный сдвиг требует намного меньшей силы. В первом случае надо преодолеть взаимодействие между атомами - перекатить все атомные ряды; во втором случае в каждый момент перекатывается лишь один единственный ряд атомов.

Прочность кристалла в предположении сдвига без наличия дисклокаций в сто раз больше значения прочности, наблюдаемой на опыте.

Однако возникает следующая трудность. Как это ясно из рисунка, приложенная сила 'выгоняет' дислокацию из кристалла. Значит, по мере увеличения степени деформации кристалл должен становиться все прочнее и, наконец, когда последняя из дислокаций будет удалена, кристалл должен достичь, согласно теории, прочности, примерно в сто раз большей прочности идеального правильного кристалла. Кристалл действительно упрочняется по мере увеличения степени деформаций, но далеко не в сто раз. Спасают положение спиральные дислокации. Оказывается (но здесь читатель должен поверить нам на слово, так как очень трудно иллюстрировать это чертежом), спиральные дисклокаций не так-то просто 'выгнать' из кристалла. Кроме того, сдвиг кристалла может происходить с помощью дислокаций обоих типов. Теория дислокаций удовлетворительно объясняет особенности явлений сдвига кристаллических плоскостей. Движение беспорядка вдоль кристалла - вот что такое с современной точки зрения представляет собой пластическая деформация кристаллов.

Твердость

Прочность и твердость не идут друг с другом об руку. Веревочный канат, лоскут сукна, шелковая нить могут обладать весьма большой пррчностью - нужно значительное напряжение, чтобы разорвать их. Разумеется, никто не скажет, что веревка и сукно - твердые материалы. И наоборот, прочность стекла невелика, а стекло - твердый материал.

Понятие твердости, которым пользуются в технике, заимствовано из житейской практики. Твердость - это противодействие внедрению. Тело твердое, если его трудно процарапать, трудно оставить на нем отпечаток. Определения эти могут показаться читателю несколько туманными. Мы привыкли к тому, что физическое понятие выражают числом. Как же это сделать в отношении твердости?

Один весьма кустарный, но в то же время практически полезный способ уже давно используется минерологами. Десять определенных минералов располагают в ряд. Первым стоит алмаз, за ним следует корунд, далее - топаз, кварц, полевой шпат, апатит, плавиковый шпат, известковый шпат, гипс и тальк. Ряд подобран следующим образом: алмаз оставляет царапину на всех минералах, но ни один из этих минералов, не может процарапать алмаз. Это и значит, что алмаз самый твердый минерал. Твердость алмаза оценивается числом 10. Следующий в ряду за алмазом корунд тверже всех других нижестоящих минералов - корунд может их процарапать. Корунду присваивают число твердости 9. Числа 8, 7 и 6 присвоены соответственно топазу, кварцу и полевому шпату на тех же основаниях.

Каждый из них тверже (т. е. может нанести царапину), чем все нижестоящие минералы, и мягче (сам может быть процарапан) минералов, имеющих большие числа твердости. Самый мягкий минерал - тальк - имеет одну единицу твердости.

'Измерение' (приходится это слово брать в кавычки) твердости при помощи этой шкалы заключается в нахождении места интересующего нас минерала в ряду десяти выбранных стандартов.

Если неизвестный минерал можно процарапать кварцем, но сам он оставляет царапину на полевом шпате, то его твердость равна 6,5.

Металловеды пользуются другим способом определения твердости. Стандартной силой (обычно 3000 кгс) при помощи стального шарика диаметром в 1 см на испытуемом материале делается вмятина. Радиус образовавшейся ямки принимается за число твердости.

Твердость по отношению к царапанию и твердость по отношению к вдавливанию не обязательно сочетаются, и один материал может оказаться тверже другого при испытании на царапание, но мягче при испытании на вдавливание.

Таким образом, нет универсального понятия твердости, не зависящего от способа измерения. Понятие твердости относится поэтому к техническим, но не к физическим понятиям.

Звуковые колебания и волны

Мы уже сообщили читателю много сведений о колебаниях, Как колеблется маятник, шарик на пружинке, каковы закономерности колебания струны - этим вопросам была посвящена одна из глав книги 1. Мы не говорили о том, что происходит в воздухе или другой среде, когда находящееся в ней тело совершает колебания. Не вызывает сомнения, что среда не может остаться равнодушной к колебаниям. Колеблющийся предмет толкает воздух, смещает частицы воздуха из тех положений, в которых они находились ранее.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату