О степени вязкости жидкости можно судить либо по быстроте падения в ней твердых тел, либо по быстроте выливания жидкости из отверстий.

Вода выльется из пол-литровой воронки за несколько секунд. Очень вязкая жидкость будет вытекать из нее часами, а то и днями. Можно привести пример и еще более вязких жидкостей. Геологи обратили внимание, что в кратере некоторых вулканов на внутренних склонах в скоплениях лавы встречаются шаровидные куски. На первый взгляд совершенно непонятно, как внутри Кратера мог образоваться такой шар из лавы. Это непонятно, если говорить о лаве как о твердом теле. Если же лава ведет себя как жидкость, то она будет вытекать из воронки кратера каплями, как и любая другая жидкость. Но только одна капля образуется не за долю секунды, а за десятилетия. Когда капля станет очень тяжелой, она оторвется и 'капнет' на дно кратера вулкана.

Из этого примера ясно, что не следует ставить на одну доску настоящие твердые тела и аморфные тела, которые, как мы знаем, много более похожи на жидкость, чем на кристаллы. Лава - как раз такое аморфное тело. Оно кажется твердым, но па самом деле это очень вязкая жидкость.

Как вы думаете, сургуч - твердое тело? Возьмите две пробки, положите их на дно двух чашек. В одну налейте какую-нибудь расплавленную соль (например, селитру - ее легко достать), а в другую чашку с пробкой налейте сургуч. Обе жидкости застынут и погребут пробки. Поставьте эти чашки в шкаф и надолго забудьте о них. Через несколько месяцев вы увидите разницу между сургучом и солью. Пробка, забитая солью, по-прежнему будет покоиться на дне сосуда. А пробка залитая сургучом, окажется наверху. Как же это произошло? Очень просто: пробка всплыла совсем так,; как она всплывает в воде. Разница лишь во времени; когда силы вязкого трения малы, пробка всплывает вверх мгновенно, а в очень вязких жидкостях всплывание продолжается месяцами.

Силы сопротивления при больших скоростях

Но вернемся к законам 'мокрого' трения. Как мы выяснили, при малых скоростях сопротивление зависит от вязкости жидкости, скорости движения и линейных размеров тела. Рассмотрим теперь законы трения при больших скоростях. Но прежде надо сказать, какие скорости считать малыми, а какие большими. Нас интересует не абсолютная величина скорости, а то8 является ли скорость достаточно малой, чтобы выполнялся рассмотренный выше закон вязкого трения.

Оказывается, нельзя назвать такое число метров в секунду, чтобы во всех случаях при меньших скоростях были, применимы законы вязкого трения. Граница применения изученного нами закона зависит от размеров тела и от степени вязкости и плотности жидкости.

Для воздуха 'малыми' являются, скорости меньше

для воды - меньше

а для вязких жидкостей, вроде густого меда, - меньше

Таким образом, к воздуху и особенно к воде законы вязкого трения мало применимы: даже при малых скоростях, порядка 1 см/с, они будут годиться лишь для крошечных тел миллиметрового размера. Сопротивление, испытываемое ныряющим в воду человеком, ни в какой степени не подчиняется закону вязкого трения.

Чем же объяснить, что при изменении скорости меняется закон сопротивления среды? Причины надо искать в изменении характера обтекания жидкостью движущегося в нем тела. На рис. 6.3 изображены два круговых цилиндра, движущихся в жидкости (ось цилиндра перпендикулярна к чертежу). При медленном движении жидкость плавно обтекает движущийся предмет - сила сопротивления, которую ему приходится преодолевать, есть сила вязкого трения (рис. 6.3, а). При большой скорости позади движущегося тела возникает сложное запутанное движение жидкости (рис. 6.3, б). В жидкости то появляются, то пропадают различные струйки, они образуют причудливы фигуры, кольца, вихри. Карта на струек все время меняется. Появление этого движения, называемого турбулентным, в корне меняет закон сопротивления.

Рис. 6.3

Турбулентное сопротивление зависит от скорости и размеров предмета совсем иначе, чем вязкое: оно пропорционально квадрату скорости и квадрату линейных размеров. Вязкость жидкости при этом движении перестает играть существенную роль; определяющим свойством становится ее плотность,- причем сила сопротивления пропорциональна первой степени плотности жидкости (газа). Таким образом, для силы F турбулентного сопротивления справедлива формула .

F ~ ??2L2,

где ? - скорость движения, L - линейные размеры предмета и ? - плотность среды. Числовой коэффициент пропорциональности, который мы не написали, имеет различные значения в зависимости от формы тела.

Обтекаемая форма

Движение в воздухе, как мы говорили выше, почти всегда 'быстрое', т. е. основную роль играет турбулентное, а не вязкое сопротивление. Турбулентное сопротивление испытывают самолеты, птицы, парашютисты. Если человек падает в воздухе без парашюта, то через некоторое время он начинает падать равномерно (сила сопротивления уравновешивает вес), но с весьма значительной скоростью, порядка 50 м/с. Раскрывание парашюта приводит к резкому замедлению падения - тот же вес уравновешивается теперь сопротивлением купола парашюта. Так как сила сопротивления пропорциональна скорости движения и размеру падающего, предмета в одинаковой степени, то скорость упадет во столько раз, во сколько изменятся линейные размеры падающего тела. Диаметр парашюта около 7 м, 'диаметр' человека около одного метра. Скорость падения уменьшается до 7 м/с. С такой скоростью можно безопасно приземлиться.

Надо сказать, что задача увеличения сопротивления решается значительно легче, чем обратная задача. Уменьшить сопротивление автомобилю и самолету со стороны воздуха или подводной лодке со стороны воды - важнейшие и нелегкие технические задачи.

Оказывается, что, изменяя форму тела, можно уменьшить турбулентное сопротивление во много раз. Для этого надо свести к минимум турбулентное движение, являющееся источником сопротивления. Это достигается приданием предмету специальной, как говорят, обтекаемой формы.

Какая же форма является в этом смысле наилучшей? На первый взгляд кажется, что телу надо придать такую форму, чтобы вперед. двигалось острие. Такое острие, как кажется, должно с наибольшим успехом 'рассекать' воздух. Но, оказывается, важно не рассекать воздух, а как можно меньше потревожить его, чтобы он очень плавно обтекал предмет. Наилучшим профилем движущегося в жидкости или газе тела является форма, тупая спереди и острая сзади[4]. При этом жидкость плавно стекает с острия, и турбулентное движение сводится к минимуму. Ни в коем, случае нельзя направлять острые углы вперед, так как острия вызывают образование турбуленлного движения.

Обтекаемая форма крыла самолета создает не только наименьшее сопротивление движению, но и наибольшую подъемную силу, когда обтекаемая поверхность стоит наклонно вверх к направлению движения. Обтекая крыло, воздух давит на него в основном в направлении, перпендикулярном, к его плоскости (рис. 6.4). Понятно, что для наклонного крыла эта сила направлена вверх.

Рис. 6.4

С возрастанием угла подъемная сила -растет. По рассуждение, основанное на одних лишь геометрических соображениях, привело бы нас к неверному выводу, что чем больше угол к направлению

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату