Я., Общая энтомология, 2 изд., М., 1971; Тыщенко В. П., Основы физиологии насекомых, ч. 1, Л., 1976; Руководство по физиологии органов чувств насекомых, М., 1977; Schröder Chr., Handbuch der Entomologie, Bd 1—3, Jena, 1912—29; Essig Е. 0., A history of entomology, N. Y., 1931; Snodgrass R. E., Principles of insect morphology, N. Y. — L., 1975; Traite dé Zoologie, ed. P.-P. Grasse, v. 9—10, P., 1949— 51; Imms A. D., A general textbook of entomology, 9 ed., L., 1957; Wigglesworth V. B., The principles of insect physiology, 6 ed., L. — N. Y., 1965; Weber Н., Grundriss der Insektenkunde, 4 Aufl., Jena. 1966; The physiology of insecta, ed. M. Rockstein, 2ed., V. 1—6, N. Y. — L., 1973—74; History of entomology, Palo Alto (Calif.), 1973.
Энтомофилия
Энтомофили'я (от греч. éntoma — насекомые и philía — любовь), перекрестное опыление у растений, осуществляемое насекомыми. См.
Энтомофторовые грибы
Энтомофто'ровые грибы' (Entomophthorales), порядок грибов класса фикомицетов (Phycomycetes). Мицелий редуцирован, часто разделен на неправильной формы отрезки, т. н. гифальные тела. Последние при слиянии образуют зигоспоры либо делятся почкованием. Некоторые клетки образуют конидиеносцы, каждый из которых несет конидию. Характерная особенность Э. г. — «отстреливание» зрелых конидий со значительной силой на большие расстояния. Э. г. — паразиты насекомых, простейших, нематод либо сапрофиты на мертвых тканях насекомых. Около 150 видов (28 родов). Широко распространены по всему земному шару.
Энтосоматические органы
Энтосомати'ческие о'рганы (от греч. entós — внутри и
Энтре-Риос
Э'нтре-Ри'ос (Entre Rios), провинция в Аргентине, в междуречье Параны и Уругвая. Площадь 76,2 тыс.
Энтропия
Энтропи'я (от греч. entropía — поворот, превращение), понятие, впервые введенное в
В термодинамике понятие «Э.» было введено Р.
Так, для термодинамической системы, совершающей квазистатически (бесконечно медленно) циклический процесс, в котором система последовательно получает малые количества теплоты dQ при соответствующих значениях абсолютной температуры
(, т. н. равенство Клаузиуса).
Это равенство, эквивалентное второму началу термодинамики для равновесных процессов, Клаузиус получил, рассматривая произвольный циклический процесс как сумму очень большого, в пределе бесконечного, числа элементарных обратимых
представляло собой полный дифференциал функции состояния
(2)
(интегральное определение Э.). Интегрирование здесь ведется вдоль пути любого квазистатического процесса, связывающего состояния
Т. о., из второго начала термодинамики следует, что существует однозначная функция состояния