в квантовой механике и квантовой статистике, числа, указывающие степень заполнения квантовых состояний частицами квантово-механической системы многих тождественных частиц . Для системы частиц с полуцелым спином (фермионов) Ч. з. могут принимать лишь два значения: 0 для свободных состояний и 1 для занятых, для системы частиц с целым спином (бозонов) — любые целые числа: 0, 1, 2,... Сумма всех Ч. з. должна быть равна числу частиц системы. С помощью Ч. з. можно описывать и числа элементарных возбуждений (квазичастиц ) квантовых полей; в этом случае их сумма не фиксирована. Средние по статистически равновесному состоянию Ч. з. для идеальных квантовых газов определяются функциями распределения Ферми — Дирака и Бозе — Эйнштейна [см. Статистическая физика , формула (19)]. Понятие Ч. з. лежит в основе метода квантования вторичного , который называется также «представлением Ч. з.».

  Д. Н. Зубарев.

Численное решение уравнений

Чи'сленное реше'ние уравне'ний, нахождение приближённых решений алгебраических и трансцендентных уравнений. Ч. р. у. сводится к выполнению арифметических операций над коэффициентами уравнений и значениями входящих в него функций и позволяет найти решения уравнений с любой наперёд заданной точностью. К Ч. р. у. сводятся многие задачи математики и её приложений. Хотя общие методы Ч. р. у. появились лишь в 17 в. (И. Ньютон ), но ещё Леонардо Пизанский (начало 13 в.) вычислил корень уравнения х 3 + 2x 2 + 10x = 20 с ошибкой, меньшей чем  В конце 16 в. И. Бюрги (Швейцария) вычислил корень уравнения 9 — 30x 2 + 27x 4 9x 6 + x 8 = 0, определяющего длину стороны правильного девятиугольника. Приблизительно в то же время Ф. Виет дал метод вычисления корней алгебраических уравнений, сходный с Ньютона методом .

  Численное решение алгебраических уравнений разбивается на следующие этапы: 1) выделение кратных корней, сводящее задачу к решению уравнения с простыми корнями; 2) определение границ, между которыми могут лежать корни уравнения; 3) разделение корней, т. е. указание промежутков, каждый из которых содержит не более одного простого корня (см. Штурма правило ); 4) грубое определение приближённого значения корня, выполняемое графически или каким-либо иным способом (например, при помощи изучения перемен знака левой части уравнения); 5) вычисление корня с заданной точностью. Наиболее распространёнными методами для этого являются методы ложного положения, метод Ньютона, Лобачевского метод , последовательных приближений метод , разложение в ряды и т.д.

  При численном решении трансцендентных уравнений ограничиваются этапами 4 и 5. О численном решении дифференциальных уравнений см. в ст. Приближённое решение дифференциальных уравнений.

  Лит.: Энциклопедия элементарной математики, кн. 2 — Алгебра, М.—Л., 1951; Курош А. Г., Курс высшей алгебры, 11 изд., М., 1975.

Численные методы

Чи'сленные ме'тоды в математике, методы приближённого решения математических задач, сводящиеся к выполнению конечного числа элементарных операций над числами. В качестве элементарных операций фигурируют арифметические действия, выполняемые обычно приближённо, а также вспомогательные операции — записи промежуточных результатов, выборки из таблиц и т.п. Числа задаются ограниченным набором цифр в некоторой позиционной системе счисления (десятичной, двоичной и т.п.). Т. о., в Ч. м. числовая прямая заменяется дискретной системой чисел (сеткой); функция непрерывного аргумента заменяется таблицей её значений в сетке (см. Таблицы математические ); операции анализа, действующие над непрерывными функциями, заменяются алгебраическими операциями над значениями функций в сетке. Ч. м. сводят решение математических задач к вычислениям, которые могут быть выполнены как вручную, так и с помощью вычислительных машин. Разработка новых Ч. м. и применение их в ЭВМ привели к возникновению вычислительной математики

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату