= 1 ряд справа расходится (гармонический ряд), то из тождества Эйлера следует теорема Евклида. Эта идея Л. Эйлера легла в основу позднейших теорий дзета- функции . Л. Эйлеру и Х. Гольдбаху принадлежат первые постановки аддитивных (т. е. связанных со сложением) задач с простыми числами.

  К середине 19 в. в основном было построено здание Ч. т., что связано с именами К. Гаусса , Ж. Лагранжа , А. Лежандра , П. Дирихле , П. Л. Чебышева , Ж. Лиувилля , Э. Куммера .

  К. Гаусс создаёт теорию сравнений, называемую иначе арифметикой остаточных классов, с помощью которой были доказаны теорема о том, что простое число является суммой двух квадратов тогда и только тогда, когда оно имеет вид 4n + 1, и теорема о представимости каждого натурального числа суммой четырёх квадратов целых чисел. Кроме того, теория сравнений привела к важным понятиям теоретико-числового характера и тригонометрической суммы. Простейшим характером является Лежандра символ .

  К. Гаусс изучил свойства квадратичных вычетов и невычетов. Основной теоремой в этом круге вопросов является т. н. квадратичный закон взаимности, при доказательстве которого К. Гаусс рассмотрел конечные суммы вида

0 < a , р — 1, а — целое.

  Суммы такого вида и их обобщения стали называть тригонометрическими, т.к. в силу формулы Эйлера ei j = cosj ± i sinj они могут быть представлены в виде суммы синусов и косинусов.

  К. Гаусс, а затем П. Дирихле, продолжая исследования Л. Эйлера, создали теорию квадратичных форм, другими словами, — теорию о представлении натуральных чисел формами вида ax 2 + 2bxy + су 2 , где а , b , с — целые числа.

  К. Гаусс и П. Дирихле первыми стали рассматривать проблему о количестве целых точек в областях на плоскости. К. Гаусс доказал, что число целых точек в круге X 2 +Y 2 £ R 2 равно pR 2 + O (R ), а П. Дирихле, в свою очередь, доказал, что число целых точек с положительными координатами под гиперболой xy = N равно

где СЭйлера постоянная . Обобщения этих двух предложений, а также нахождение наилучших возможных остатков в написанных формулах (проблема целых точек в круге Гаусса и проблема делителей Дирихле) послужили источником большой главы Ч. т.

  Теоремы о бесконечности числа простых чисел в арифметич. прогрессиях частного вида, таких, как 4k ± 1, 6k ± 1, были известны давно, однако только П. Дирихле удалось доказать общую теорему о бесконечности числа простых чисел в прогрессиях вида

nk + l , n = 0, 1, 2,...,

  где k (разность прогрессии) и l (первый её член) взаимно просты. Он рассмотрел аналог эйлерова произведения по всем простым числам

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату