. В «Началах» (кн. X, предложение 9) Евклид показал, как находить все его решения, исходя из наименьшего, для случая а = 2. Систематическое изложение теории известных к тому времени уравнений в целых числах дано Диофантом в его «Арифметике» (середина 3 в. н. э.). Эта книга сыграла большую роль в дальнейшем развитии той части Ч. т., которая занимается решением уравнений в целых числах, называемых теперь диофантовыми уравнениями .
Следующий этап в развитии Ч. т. связан с именем П. Ферма , которому принадлежит ряд выдающихся открытий в теории диофантовых уравнений и в теории, связанной с делимостью целых чисел. Им была выдвинута гипотеза, получившая название Ферма великая теорема , и доказана теорема, известная как Ферма малая теорема , которая играет важную роль в теории сравнений и её позднейших обобщениях. Продолжая исследования Ферма по теории делимости чисел, Л. Эйлер доказал теорему, обобщающую малую теорему Ферма. Ему принадлежат также и первые доказательства великой теоремы Ферма для показателя n = 3.
К началу 18 в. в науке о целых числах накопилось много фактов, позволивших создать стройные теории и общие методы решения задач Ч. т.
Л. Эйлер был первым из математиков, кто стал создавать общие методы и применять др. разделы математики, в частности математический анализ, к решению задач Ч. т. Исследуя вопрос о числе решений линейных уравнений вида
a 1 X 1 +... + ап Хп = N ,
где a 1 ,..., an — натуральные числа, в целых неотрицательных числах X 1 ,... , Xn , Л. Эйлер построил производящую функцию Ф (z ) от переменной z , коэффициенты которой при разложении по степеням z равняются числу решений указанного уравнения. Функция Ф (z ) определяется как формальное произведение рядов
, …, 
т. е. Ф (z ) = Ф 1 (z ). ... . Фк (z ), каждый из которых сходится при ½z ½ < 1 и имеет достаточно простой вид, являясь суммой членов бесконечной геометрической прогрессии:
, …, 
Следовательно,

причём I (N ) — число решений изучаемого уравнения. Метод производящих функций Эйлера послужил истоком кругового метода Харди—Литлвуда, далеко идущим развитием которого, в свою очередь, явился метод тригонометрических сумм И. М. Виноградова .
Другой проблемой Ч. т., стимулировавшей создание мощного метода, была проблема простых чисел. Л. Эйлер, доказывая теорему Евклида о бесконечности числа простых чисел, рассмотрел произведение по всем простым числам р :

при s > 1. Это произведение сходится, и если его раскрыть, то в силу однозначности разложения натуральных чисел на простые сомножители получается, что оно равняется сумме ряда

откуда следует тождество Эйлера:
, s > 1.
Так как при s