достаточными запасами богатых железных руд. Они удовлетворяют свои потребности за счёт добычи бедных руд и импорта богатых руд.

  Лит.: Железорудная база черной металлургии СССР, М., 1957; Черная металлургия капиталистических стран, ч. 7 — Железорудная промышленность и обогащение руд, М., 1960; Технический прогресс в черной металлургии СССР. Железорудная промышленность, М., 1962; Быховер Н. А., Экономика минерального сырья. Железо, М., 1967; Браун Г. А., Железорудная база черной металлургии СССР, 2 изд., М., 1970; Следзюк П. Е., Об улучшении использования резервов производства в железорудной промышленности, «Горный журнал», 1970, № 7; Виноградов B. С., Горнодобывающая промышленность черной металлургии к XXIV съезду КПСС, там же, 1971, № 3.

  В. А. Адамчук.

Железосинеродистый калий

Железосинеро'дистый ка'лий, K3[Fe(CN)6], то же, что красная кровяная соль, или Калия гексацианоферриат.

Железоуглеродистые сплавы

Железоуглеро'дистые спла'вы, сплавы железа с углеродом на основе железа. Варьируя состав и структуру, получают Ж. с. с разнообразными свойствами, что делает их универсальными материалами. Различают чистые Ж. с. (со следами примесей), получаемые в небольших количествах для исследовательских целей, и технические Ж. с. — стали (до 2%С) и чугуны (св. 2% С), мировое производство которых измеряется сотнями млн. т. Технические Ж. с. содержат примеси. Их делят на обычные (фосфор Р, сера S, марганец Mn, кремний Si, водород Н, азот N, кислород О), легирующие (хром Cr, никель Ni, молибден Mo, вольфрам W, ванадий V, титан Ti, кобальт Со, медь Cu и др.) и модифицирующие (магний Mg, церий Ce, кальций Ca и др.). В большинстве случаев основой, определяющей строение и свойства сталей и чугунов, является система Fe — С. Начало научному изучению этой системы положили русские металлурги П. П. Аносов (1831) и Д. К. Чернов (1868). Аносов впервые применил микроскоп при исследовании Ж. с., а Чернов установил их кристаллическую природу, обнаружил дендритную кристаллизацию и открыл в них превращения в твёрдом состоянии. Из зарубежных учёных, способствовавших созданию диаграммы состояния Fe — С сплавов, следует отметить Ф. Осмонда (Франция), У. Ч. Робертса-Остена (Англия), Б. Розебома (Голландия) и П. Геренса (Германия).

  Фазовые состояния Ж. с. при разных составах и температурах описываются диаграммами стабильного (рис. 1, а) и метастабильного (рис. 1, б) равновесий. В стабильном состоянии в Ж. с. встречаются жидкий раствор углерода в железе (Ж), три твёрдых раствора углерода в полиморфных модификациях железа (табл. 1)

  Табл. 1.— Кристаллические фазы железоуглеродистых сплавов

Название фазы Природа фазы Структура
a-феррит Твердый раствор внедрения углерода в a-Fe Объемноцен трированная кубическая
Аустенит Твердый раствор внедрения углерода в g-Fe Гранецентри рованная кубическая
d-феррит Твердый раствор внедрения углерода в d-Fe Объемноцен трированная кубическая
Графит Полиморфная модификация углерода Гексогональная слоистая
Цементит Карбид железа Fe2C Ромбическая

a-раствор (a-феррит), g-раствор (аустенит) и d-раствор (d-феррит), и графит (Г). В метастабильном состоянии в Ж. с. встречаются Ж, a-, g-, d-растворы и карбид железа Fe3C — цементит (Ц). Области устойчивости Ж. с. в однофазных и двухфазных состояниях указаны на диаграммах. При некоторых условиях в Ж. с. могут существовать в равновесии и три фазы. При температурах НВ возможно перитектич. равновесие d + g + Ж, ECF эвтектическое стабильное равновесие g + Ж + Г; при ECF — эвтектическое метастабильное равновесие g + Ж + Ц; при P'S'K' — эвтектоидное стабильное равновесие a + g + Г', при PSK — эвтектоидное метастабильное равновесие a + g + Ц. Диаграммы а и б вычерчиваю и в одной координатной системе (рис. 1, в). Такая сдвоенная диаграмма наглядно характеризует относительное смещение однотипных линий равновесия и облегчает анализ Ж. с., содержащих стабильные и метастабильные фазы одновременно.

  Основной причиной появления в Ж. с. высокоуглеродистой метастабильной фазы в виде цементита являются трудности формирования графита. Образование графита в жидком растворе Ж и твёрдых растворах a и g связано с практически полным удалением атомов железа из участков сплава, где зарождается и растет графит. Оно требует значительных атомных передвижений. Если Ж. с. охлаждаются медленно или длительно выдерживаются при повышенных температурах, атомы железа успевают удалиться из мест, где формируется графит, и тогда возникают стабильные состояния. При ускоренном охлаждении и недостаточных выдержках удаление малоподвижных атомов железа задерживается, почти все они остаются на месте, и тогда в жидких и твёрдых растворах зарождается и растет цементит. Необходимая для этого диффузия легкоподвижных при повышенных температурах атомов углерода, не требующая больших выдержек, успевает происходить и при ускоренном охлаждении. Помимо основных фаз, указанных на диаграммах, в технических Ж. с. встречаются небольшие количества и др. фаз, появление которых обусловлено наличием примесей. Часто встречаются сульфиды (FeS, MnS), фосфиды (Fe3P), окислы железа и примесей (FeO, MnO, Al2O3, Cr2O3, TiO2 и др.), нитриды (FeN, AlN) и др. неметаллические фазы. Точечными линиями на диаграммах отмечены точки Кюри, наблюдающиеся в Ж. с. в связи с магнитными превращениями феррита (768°С) и цементита (210°С).

  Строение Ж. с. определяется составом, условиями затвердевания и структурными изменениями в твёрдом состоянии. В зависимости от содержания углерода Ж. с. делят на стали и чугуны. Стали с концентрацией углерода, меньшей чем эвтектоидная S' и S (табл. 2), называют доэвтектоидными, а более высокоуглеродистые — заэвтектоидными. Чугуны с концентрацией углерода, меньшей чем эвтектическая C1 и С, называют доэвтектическими, а более высокоуглеродистые — заэвтектическими.

  Табл. 2.— Координаты точек диаграмм Fe — С

Точка Температура, °С Концентрация углерода, %
A 1539 0,000
B 1494 0,50
С' 1152 4,26
С 1145 4,30
N 1400 0,000
Н 1494 0,10
J 1494 0,16
G 910 0,000
E' 1152 2,01
E 1145 2,03
S' 738 0,68
S 723 0,80
P' 738 0,023
P 723 0,025

  Затвердевание сталей, содержащих до 0,5% С, начинается с выпадения кристаллов 8-раствора обычно в виде дендритов. При концентрациях углерода до 0,1% кристаллизация заканчивается образованием однофазной структуры d-раствора. Стали с 0,1—0,5% С после выделения некоторого количества 8-раствора испытывают перитектическое превращение Ж + d —> g. В интервале концентраций 0,10— 0,16% С оно приводит к полному затвердеванию, а в интервале 0,16—0,50% С кристаллизация завершается

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату