при охлаждении до температуры линии IE. В Ж. с. с 0,5—4,26% С кристаллизация начинается с выделения g-раствора также в виде дендритов. Стали полностью затвердевают в интервале температур, ограниченном линиями ВС и IE, приобретая однофазную аустенитную структуру. Затвердевание же чугунов, начинаясь с выделения избыточного (первичного) g- раствора, заканчивается эвтектическим распадом остатка жидкости по одному из трёх возможных вариантов: Ж ® g + Г, Ж ® g + Ц или Ж ® (+ Г + Ц. В первом случае получаются т. н. серые чугуны, во втором — белые, в третьем — половинчатые. В зависимости от условий кристаллизации графит выделяется в виде разветвленных (рис. 2, ж) или шаровидных (рис. 2, з) включений, а цементит — в виде монолитных пластин (рис. 2, и) или проросших разветвленным аустенитом (т. н. ледебурит, рис. 2, к). В Ж. с., содержащих более 4,26—4,3% С, кристаллизация переохлажденного ниже линии D1C1 расплава в условиях медленного охлаждения начинается с образования первичного графита разветвленной или шаровидной формы. В условиях ускоренного охлаждения (при переохлаждениях ниже линии DC) образуются пластины первичного цементита (рис. 2, л). При промежуточных скоростях охлаждения выделяются и графит, и цементит. Кристаллизация заэвтектических чугунов, так же как и доэвтектических, завершается распадом остатка жидкости на смесь g- раствора с высокоуглеродистыми фазами.
Строение затвердевших Ж. с. существенно изменяется при дальнейшем охлаждении. Эти изменения обусловлены полиморфными превращениями железа, уменьшением растворимости в нём углерода, графитизацией цементита. Структура может изменяться в твёрдом состоянии в результате процессов рекристаллизации твёрдых растворов, сфероидизации кристаллов (из неравноосных становятся равноосными), коалесценции (одни кристаллы цементита укрупняются за счёт других) высокоуглеродистых фаз.
Полиморфные превращения Ж. с. связаны с перестройками гранецентрированной кубической (ГЦК) решётки g-Fe и объёмноцентрированной решётки (ОЦК) a- и d-Fe
В зависимости от условий охлаждения и нагревания полиморфные превращения твёрдых растворов происходят разными путями. При небольших переохлаждениях (и перегревах) имеет место т. н. нормальная перестройка решёток железа, осуществляющаяся в результате неупорядоченных индивидуальных переходов атомов от исходной фазы к образующейся; она сопровождается диффузионным перераспределением углерода между фазами. При больших скоростях охлаждения или нагревания полиморфные превращения твёрдых растворов происходят бездиффузионным (мартенситным) путём. Решётка железа перестраивается быстрым сдвиговым механизмом в результате упорядоченных коллективных смещений атомов без диффузионного перераспределения углерода между фазами. Например, при закалке Ж. с. в воде g- раствор переходит в a- раствор того же состава. Этот пересыщенный углеродом a- раствор называют мартенситом (рис. 2, е). Превращения при промежуточных условиях могут совмещать в себе сдвиговую перестройку решётки железа с диффузионным перераспределением углерода (бейнитное превращение). Формирующиеся при этом структуры существенно различны. В первом случае образуются равноосные с малым числом дефектов кристаллы твёрдого раствора (рис. 2, а). Во втором и третьем — игольчатые и пластинчатые кристаллы (рис. 2, е) с многочисленными двойниками и линиями скольжения. Структура Ж. с. изменяется также и в связи с изменением растворимости углерода в a- и g- железе при охлаждении и нагревании. При охлаждении растворы пересыщаются углеродом и выделяются кристаллы высокоуглеродистых фаз (цементита и графита). При нагревании имеющиеся высокоуглеродистые фазы растворяются в a- и g-фазах.
Зарождение и рост кристаллов цементита в пересыщенных растворах происходит обычно с большей скоростью, чем образование графита, и поэтому Ж. с. часто метастабильны. В зависимости от переохлаждения цементит, выделяющийся из твёрдого раствора, может иметь вид равноосных кристаллов, пограничной сетки, пластин и игл (рис. 2, г, д). При высокотемпературных выдержках кристаллы цементита сфероидизируются; может происходить и процесс коалесценции. Если Ж. с., содержащие цементит, длительно выдерживать при повышенных температурах, происходит графитизация — зарождается и растет графит, а цементит растворяется, Этот процесс используется при производстве изделий из графитизированной стали и ковкого чугуна (рис. 2, м). Важную роль при формировании структуры Ж. с. в твёрдом состоянии играет эвтектоидный распад т-раствора на a-раствор и высокоуглеродистую фазу. При очень малых переохлаждениях образуются феррит и графит (рис. 2, м), при небольшом увеличении переохлаждения — феррит и сфероидизированный цементит (рис. 2, г), затем (рис. 2, в) смесь феррита и цементита приобретает пластинчатое строение перлита, тем более тонкое, чем больше переохлаждение. При персохлаждениях, измеряемых сотнями градусов, эвтектоидный распад подавляется, и g- раствор превращается в мартенсит (рис. 2, е). Строение Ж. с. можно изменять в широких пределах. Основными методами управления структурой Ж. с. являются изменения химического состава, условий затвердевания, пластической деформации, термической и термомеханической обработок. Меняя фазовый состав, величину, форму, распределение и дефектность кристаллов, можно широко варьировать и свойства Ж. с. Например, важнейшие при эксплуатации Ж. с. механические свойства изменяются в следующих пределах: твёрдость от 60 до 800 HB; предел прочности 2·104—3,5·106 н/см2 (2·103 —3,5·105 кгс/см2); относительное удлинение от 0 до 70%.
Лит.: Д. К. Чернов и наука о металлах, под ред. Н. Т. Гудцова, Л.—М., 1950; Бочвар А. А., Металловедение, 5 изд., М., 1956; Лившиц Б. Г., Металлография, М., 1963; Тыркель Е., История развития диаграммы железо — углерод, пер. с польск., М., 1968; Бунин К. П., Баранов А. А., Металлография, М., 1970.
К. П. Бунин.
Рис. 2м. Типичные структуры железоуглеродистых сплавов. Ковкий чугун (включения графита в ферритной основе). Увеличено в 150 раз.
Рис. 2и. Типичные структуры железоуглеродистых сплавов. Белый доэвтектический чугун (эвтектический монолитный цементит и перлит). Увеличено в 500 раз.
Рис. 2б. Типичные структуры железоуглеродистых сплавов. Сталь с 0,65% С (сетка феррита и перлит). Увеличено в 150 раз.
Рис. 2г. Типичные структуры железоуглеродистых сплавов. Сталь с 0,91% С (сфероидизированный цементит в феррите). Увеличено в 500 раз.
Рис. 2д. Типичные структуры железоуглеродистых сплавов. Сталь с 1,18% С: сетка и пластины цементита (светлые) в перлите. Увеличено в 150 раз.
Рис. 2е. Типичные структуры железоуглеродистых сплавов. Сталь с 0,85% С (пластины мартенсита и остаточный аустенит). Увеличено в 500 раз.
Рис. 2к. Типичные структуры железоуглеродистых сплавов. Белый доэвтектический чугун: дендриты первичного аустенита (и ледебурит). Увеличено в 150 раз.
Рис. 2з.Типичные структуры железоуглеродистых сплавов. Серый чугун с шаровидным графитом на ферритной основе.
Рис. 2ж. Типичные структуры железоуглеродистых сплавов. Серый чугун: разветвленные пластины графита (тёмные) и зёрна феррита.
Рис. 2а. Типичные структуры железоуглеродистых сплавов. Сталь с 0,15% С: зёрна феррита (светлые) и участки перлита (тёмные). Увеличено в 150 раз.
Рис. 1б. Диаграммы состояния железоуглеродистых сплавов: состояние метастабильных равновесий.
Рис. 2л. Типичные структуры железоуглеродистых сплавов. Белый заэвтектический чугун (пластины первичного цементита и ледебурит). Увеличено в 150 раз.
Рис. 1в. Диаграммы состояния железоуглеродистых сплавов: состояния с двойными линиями.
Рис. 1a. Диаграммы состояния железоуглеродистых сплавов: состояние стабильных равновесий.
1
« ... 25 26 27 28 » ... 59