охватывают широкий круг задач экономики, биологии и техники и трактуются обычно в терминах статистической теории выявления систематических различий между результатами непосредственных измерений, выполненных при тех или иных меняющихся условиях. Если значения неизвестных постоянных a1,...., an могут быть измерены с помощью различных методов или измерительных средств M1,..., Мm и в каждом случае систематическая ошибка может зависеть как от выбранного метода, так и от неизвестного измеряемого значения ai, то результаты измерений xij представляют собой суммы вида
xij = ai, + bij + dij,
i = 1, 2,..., n; j = 1, 2,..., m,
где bij — систематическая ошибка, возникающая при измерении ai по методу Mj, dij — случайная ошибка. Такая модель называется двухфакторной схемой Д. а. (первый фактор — измеряемая величина, второй — метод измерения). Дисперсии эмпирических распределений, соответствующих множествам случайных величин
xij, xij - xi *- x *j + x **, xi * и x *j, где
выражаются формулами:
Эти дисперсии удовлетворяют тождеству
s2 = s20 + s21 + s22,
которое и объясняет происхождение названия Д. а.
Если величины систематических ошибок не зависят от метода измерений (т. е. между методами измерений нет систематических расхождений), то отношение s22/s20 близко к единице. Это свойство лежит в основе критерия для статистического выявления систематических расхождений: если s22ls20 значимо отличается от единицы, то гипотеза об отсутствии систематических расхождений отвергается. Значимость отличия определяется в согласии с законом распределения вероятностей случайных ошибок измерений. В частности, если все измерения равноточны и случайные ошибки подчиняются нормальному распределению, то критические значения для отношения s22/s20 определяются с помощью таблиц так называемого F-распределения (распределения дисперсионного отношения).
Изложенная схема позволяет лишь обнаружить наличие систематических расхождений и, вообще говоря, непригодна для их численной оценки с последующим исключением из результатов наблюдений. Эта цель может быть достигнута только при многократных измерениях (при повторных реализациях указанной схемы).
Лит.: Шеффе Г., Дисперсионный анализ, пер. с англ., М., 1963; Смирнов Н. В., Дунин-Барковский И. В., Курс теории вероятностей и математической статистики для технических приложений, 2 изд., М., 1965.
Л. Н. Большев.
Дисперсионный анализ (в химии)
Дисперсио'нный ана'лиз в химии, совокупность методов определения дисперсности, т. е. характеристики размеров частиц в дисперсных системах. Д. а. включает различные способы определения размеров свободных частиц в жидких и газовых средах, размеров каналов-пор в тонкопористых телах (в этом случае вместо понятия дисперсности используют равнозначное понятие пористости), а также удельной поверхности. Одни из методов Д. а. позволяют получать полную картину распределения частиц (пор) по размерам (объёмам), а другие дают лишь усреднённую характеристику дисперсности (пористости).
К первой группе относятся, например, методы определения размеров отдельных частиц непосредственным измерением (ситовой анализ, оптическая и электронная микроскопия) или по косвенным данным: скорости оседания частиц в вязкой среде (седиментационный анализ в гравитационном поле и в центрифугах), величине импульсов электрического тока, возникающих при прохождении частиц через отверстие в непроводящей перегородке (кондуктометрический метод, см. Коултера прибор), или др. показателям.
Вторая группа методов объединяет оценку средних размеров свободных частиц и определение удельной поверхности порошков и пористых тел. Средний размер частиц находят по интенсивности рассеянного света (нефелометрия), с помощью ультрамикроскопа, методами диффузии и т.д.; удельную поверхность — по адсорбции газов (паров) или растворённых веществ, по газопроницаемости, скорости растворения и др. способами. Ниже приведены границы применимости различных методов Д. а. (размеры частиц в м):
Ситовой анализ..................................................10- 2—10-4
Седиментационный анализ
в гравитационном поле.....................................10-4—10-6
Кондуктометрический метод............................10-4—10-6
Микроскопия........................................…..........10-4—10-7
Метод фильтрации.............................…............10-5—10-7
Центрифугирование....................…...................10-6—10-8
Ультрацентрифугирование...........….................10-7—10-9
Ультрамикроскопия...........................................10-7—10-9
Нефелометрия....................................…............10-7—10-9
Электронная микроскопия................................10-7—10-9
Метод диффузии................................................10-7—10-10
Д. а. широко используют в различных областях науки и промышленного производства для оценки дисперсности систем (суспензий, эмульсий, золей, порошков, адсорбентов и т.д.) с величиной частиц от нескольких миллиметров (10-3 м) до нескольких нанометров (10-9 м).
Лит.: Фигуровский Н. А., Седиментометрический анализ, М. — Л., 1948; Ходаков Г. С., Основные методы дисперсионного анализа порошков, М., 1968; Коузов П. А., Основы анализа дисперсного состава промышленных пылей и измельченных материалов, Л., 1971; Рабинович Ф. М., Кондуктометрический метод дисперсионного анализа, Л., 1970; Irani R. R., Callis C. F., Particle size, Measurement, interpretation and application, N. Y. — L., 1963.
Диспе'рсия (от лат. dispersio — рассеяние), в математической статистике и теории вероятностей, наиболее употребительная мера рассеивания, т. е. отклонения от среднего. В статистическом понимании Д.
есть среднее арифметическое из квадратов отклонений величин xi от их среднего арифметического
В теории вероятностей Д. случайной величины Х называется математическое ожидание Е (Х — mх) 2 квадрата отклонения Х от её математического ожидания mх = Е (Х). Д. случайной величины Х обозначается через D (X) или через s2X. Квадратный корень из Д. (т. е. s, если Д. есть s2) называется средним квадратичным отклонением (см. 1 « ... 97 98 99 100 » ... 157