геологической дисциплины, поэтому она не представляет собой самостоятельной и обособленной отрасли геологии. Д. г. посвящена изучению внутренних и внешних геологических процессов; изучение некоторых из них выделилось в самостоятельные отрасли геологии (тектоника, вулканология, сейсмология, геоморфология и др.).

  При изучении магматизма Д. г. касается процессов, управляющих движениями магмы, возникновением и развитием вулканов, процессов, приводящих к формированию интрузивных тел и пород.

  Раздел, посвящённый метаморфизму, рассматривает процессы, возникающие под воздействием высокого давления и высокой температуры недр Земли и приводящие к изменениям в составе и сложении осадочных и изверженных пород, к их переходу в категорию пород метаморфических.

  Часть Д. г., охватывающая экзогенные процессы, освещает: процессы физического, химического и биологического выветривания, приводящие к разрушению горных пород; геологическую деятельность ветра (выдувание, перенос и отложение ветром мелких частиц горных пород, формирование эоловых форм рельефа, образуемых ими отложений); геологическую деятельность поверхностных проточных вод, главным образом рек; деятельность болот и озёр; происхождение и особенности впадин рельефа, заполненных водой; геологическую деятельность морей и океанов (разрушающую, транспортирующую и аккумулирующую), состав, фации, распространение морских осадков; деятельность снега и льда; процессы, связанные с формированием многолетнемёрзлых горных пород.

  При изучении внутренних процессов Д. г. опирается на данные геофизики, геохимии и др. наук. Различные формы проявления внешних процессов изучаются Д. г. наряду с геоморфологией, гляциологией, литологией, с которыми она обнаруживает тесную связь. Д. г. имеет большое методологическое значение, т.к. с несомненностью показывает, что все объекты на Земле, от камня до горной системы, находятся в непрерывном развитии, в тесной связи между собой и окружающей обстановкой.

  Д. г. как наука получила начало в 19 в. благодаря работам Ч. Лайеля, Э. Зюсса и др. Развитие Д. г. в России и СССР связано с именами К. И. Богдановича, И. В. Мушкетова, А. А. Иностранцева, И. Д. Лукашевича, В. Н. Вебера, В. А. Обручева и др.

  Д. г. имеет большое практическое значение, поскольку знание конкретной геологической обстановки, связанной с эндогенными и экзогенными процессами любого региона, важно для поисков и разведки месторождений полезных ископаемых, а также строительства промышленных и гражданских объектов.

  Лит.: Курс общей геологии, М., 1960; Жуков М. М., Славин В. И., Дунаева Н. Н., Основы геологии, 2 изд., М., 1970; Якушева А. Ф., Динамическая геология, М., 1970.

  Г. П. Горшков.

Динамическая климатология

Динами'ческая климатоло'гия, направление в климатологии, объясняющее особенности климата как результат процессов общей циркуляции атмосферы; см. также Циркуляция атмосферы, Климатология.

Динамическая метеорология

Динами'ческая метеороло'гия, теоретическая метеорология, раздел метеорологии, занимающийся теоретическим изучением атмосферных процессов в тропосфере и нижней стратосфере с использованием уравнений гидромеханики, термодинамики и теории излучения. За пределами Д. м. остаются лишь теория электрических, акустических и оптических явлений в атмосфере.

  Главная задача Д. м. — прогноз погоды, именно разработка численных методов прогноза метеорологических элементов (давления, температуры, ветра, облачности, осадков, видимости) на различные сроки на основе изучения общей циркуляции атмосферы, т. е. системы крупномасштабных переносов воздуха над нашей планетой. Д. м. занимается и более ограниченными задачами — анализом происхождения и поведения атмосферных волн и вихрей различного масштаба и деталей общей циркуляции (фронтов атмосферных и струйных течений), а также атмосферной турбулентности и конвекции.

  Попытки теоретического объяснения отдельных особенностей атмосферной циркуляции восходят к 1-й половине 18 в. (английский учёный Дж. Хэдли). В начале 19 в. П. Лапласом была теоретически установлена связь между изменением атмосферного давления с высотой и температурой (барометрическая формула) и тем заложены основы статики атмосферы. В 1-й половине 19 в. возникла термодинамика, которая вскоре была применена к объяснению отдельных атмосферных процессов (таких, как фён). Однако только в 80-х гг. в работах немецких учёных Г. Герца, В. Бецольда и др. оформилась теория адиабатических процессов (т. е. процессов, в которых можно пренебречь теплообменом) в атмосфере, содержащей водяной пар; дальнейшее её развитие относится уже к 20 в. (английский учёный У. Н. Шоу, норвежские учёные А. Рефсдаль, Я. Бьеркнес и др.). В 1-й половине 19 в. французский учёный Г. Кориолис предложил теорему об относительном движении на вращающейся Земле, что позволило применить уравнения гидродинамики, сформулированные Л. Эйлером ещё в 18 в., к метеорологическим проблемам. У. Феррель (США) в ряде исследований, начатых в 1856, дал первую теоретическую модель общей циркуляции атмосферы, основанную на уравнениях гидромеханики, что способствовало оформлению Д. м. как научной дисциплины. В 80-х гг. 19 в. крупный вклад в развитие Д. м. внёс Г. Гельмгольц, предложивший теоретическую модель общей циркуляции поверхности разрыва (атмосферные фронты). В 1897 В. Бьеркнес теоремами о циркуляции и вихреобразовании положил начало «физической гидродинамике» атмосферы как сжимаемой жидкости наиболее общего типа (бароклинной жидкости), в которой распределение плотности зависит от распределения как давления, так и температуры. В 1904 он сформулировал задачу прогноза погоды как решение уравнений атмосферной термогидродинамики. Развитие идей В. Бьеркнеса определило дальнейшие успехи Д. м. В начале 20 в. М. Маргулес в Австрии, В. Бьеркнес и др. построили теорию атмосферных фронтов; Маргулес также заложил основы энергетики атмосферы. В это же время интенсивно изучалась атмосферная турбулентность, определяющая вертикальный обмен тепла, влаги, коллоидных примесей и количества движения в атмосфере.

  В 20-х гг. 20 в. начинается быстрое развитие Д. м. в СССР; сформировалась советская школа Д. м., основанная А. А. Фридманом. Ещё в 1914 Фридман совместно с шведским учёным Т. Гессельбергом впервые дал оценки порядков величин основных метеорологических элементов (давления, температуры, влажности и др.) и их изменчивости, позволившие упростить уравнения Д. м. В 1922 Фридман построил и детально проанализировал общее уравнение для определения вихря скорости, характеристики местного вращения среды около мгновенных осей в движущейся жидкости, которое впоследствии приобрело фундаментальное значение в теории прогноза погоды. Н. Е. Кочин в 1931 решил задачу о потере устойчивости поверхности раздела между двумя воздушными массами, связанной с образованием циклонов, а в 1935 развил теорию общей циркуляции атмосферы, использовав идею о планетарном пограничном слое. А. А. Дородницын (1938, 1940) теоретически решил задачу о влиянии горного хребта на воздушный поток, в 1940 он рассчитал суточный ход температуры. Принципиальным шагом в решении основной практической задачи Д. м. — прогноза погоды — явилась работа И. А. Кибеля, в которой был дан метод прогноза поля давления и температуры на сутки (1940). Основы гидродинамического метода долгосрочных прогнозов были заложены в работе Е. М. Блиновой (1943). Один из узловых вопросов Д. м. — взаимосвязь полей давления и ветра в атмосфере — был исследован шведским учёным К. Г. Росби (1938) и успешно решён А. М. Обуховым в СССР в 1949. В дальнейшем эта задача была обобщена в работах 1950-х гг. И. А. Кибеля и А. С. Монина, что позволило в 1960-х гг. перейти к более точным методам прогноза погоды. Первые численные прогнозы давления были выполнены в 1951 американским учёным Дж. Чарни и др. Существенным шагом в теории прогноза явились работы Г. И. Марчука и Н. И. Булеева (1953; СССР) и К. Хинкельмана (ФРГ), в которых впервые учитывалось влияние процессов на большой площади на изменение атмосферных условий в пункте, для которого рассчитывается прогноз. Появление в 50-х гг. ЭВМ и бурное

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату