Поэтому Борис и Владимир одного роста.
и другие подобные, состоящие из предложений такого вида, имеют форму
((
Если мы используем объектную квантификацию в назначении логической формы, то истинность составляющих импликацию предложений зависит от существования чисел – иными словами, если мы решаем назначить предложению «Борис и Владимир одного роста» форму ((
Этот аргумент был предложен в поддержку подстановочной семантики363, но равно относится ко всем случаям назначения логической формы. Даже в тех случаях, когда подстановочная интерпретация оказывается неподходящей, отсюда еще не следует, что мы должны употребить объектную интерпретацию. Скорее, мы должны решить, действительно ли мы приветствовали бы онтологические обязательства, которые повлечет за собой объектная интерпретация, и на этом основании (по крайней мере, частично) мы можем решить, следует ли употребить референциальную семантику для такой теории.
Здесь возникает онтологический аргумент против подстановочной квантификации, основанный на описании значения предикатов в терминах семантической концепции истины Тарского. Определение истины для языка при использовании подстановочной квантификации сможет имплицировать инстансы схемы Тарского (' … истинны только и если только – ') только тогда, когда оно будет встроено в теорию, в которой обозначение является определимым – что, таким образом, делает возможной для этого языка референциальную семантику364. Кроме того, метаязык будет должен иметь такие аксиомы, что все в диапазоне кванторов имело бы имя, и что каждое имя называло бы нечто в диапазоне кванторов. Если бы это было истинно, то у обращения к подстановочной квантификации не было бы никакое онтологического значение. Поскольку в конечном счете нам понадобится определение истины для нашего объектного языка, то это восстановит в метаязыке все онтологические обязательства, которых мы хотели избежать.
В этом аргументе может быть оспорено представление о роли T-эквивалентностей (biconditionals) в утверждении определения истинности. Если цель состоит в том, чтобы гарантировать онтологическую адекватность определения истинности, то не необходимо, чтобы инстансы (T) были логическими следствиями определения: достаточно, чтобы они оставались истинными при замене 'истинно' на definiens, потому что любой предиката, заменяющий 'истинно' во всех случаях (T) без изменения их истинностного значения, будет иметь объемом все истинные предложения объектного языка, и только их. Поскольку в этом состояла цель, установленная Тарским для T-эквивалентностей, постольку они должны быть логическими следствиями определения: для того, чтобы мы могли знать, что определение истинности является онтологически адекватным, мы будем должны знать, что замена 'истинно' на definiens оставляет истинные T-эквивалентности. При этом последние должны будут следовать из определения наряду со всеми другими предложениями, выражающими наше знание относительно терминов, в которых дается
Поэтому контраргумент в пользу подстановочной квантификации здесь может состоять в следующем. Проверка правильности определения истинности потребует доказательства T-эквивалентностей определения. Но наши стандарты доказательства могут различаться в зависимости от порядковости предикатов. Для объектной интерпретации это выводимость первого порядка, но когда кванторы получают подстановочную интерпретацию, то исчисление первого порядка оказывается семантически неполным. Нас интересует, зависит ли правильность подстановочного определения истинности от удовлетворительности T-эквивалентностей. Если мы принимаем, что при подстановочной интерпретации кванторов определение истинности имплицирует T-эквивалентности, то можно рекурсивно получать T-эквивалентности для квантифицированных предложений без обращения к исчислениям первого порядка. В этом случае T- эквивалентности установлены при помощи предиката 'быть истинным', и таким образом мы можем без обращения к референциальной семантике знать, что подстановочная характеристика истинности правильна.
Возможно расширение онтологического аргумента против подстановочной квантификации, связанное с тем, что даже при подстановочной интерпретации экзистенциальный квантор имеет подлинное требование выразить понятие существования. Согласно Куайну, так как подстановочная квантификация валидна вне зависимости от того, каков класс замены, то наделение ее референциальным смыслом вынудило бы нас признать, что предложения типа '(()) ((2+2=4))' затрагивают нашу онтологию. И это вынудило бы нас расценивать ')' как нечто имеющее референцию, что абсурдно. Кроме того, Куайн утверждает, что ограничение класса подстановок единичными терминами влечет за собой обращение к объектной квантификации, так как единичный термин – это именно термин, который может занимать место связанной переменной, интерпретируемой объектно. Здесь возможно следующее возражение: объектная квантификация может начинаться с «основного класса» единичных терминов, который затем пополняется новыми единичными терминами, заменяющими уже только подстановочные переменные. С такой точки зрения сам тот факт, что подстановочная интерпретация дает условия истинности для квантифицированных предложений, означает, что можно говорить об их объектах как о существующих365. Однако здесь естественно контрвозражение: далеко не всякое заключение об истинности будет онтологическим утверждением. Иными словами, можно ли утверждать, что подстановочная квантификация способна выразить понятие существования? Например, действительно ли Куайн считает, что это не так?
Квантор не является объектным или подстановочным сам по себе: таким или другим делает его интерпретация, и это очевидно не исключает возможность дальнейшей дополнительной интерпретации. Куайн утверждает, скорее, что при подстановочной интерпретации квантора не принимаются никакие онтологические обязательства