поставляются вместе с определением X ту же простоту использования, что и для функций- членов интерфейса X. Одним из главных мотивов принятия ADL был, в частности, класс std::string (см. [Sutter00]).

Рассмотрим класс X, определенный в пространстве имен N:

class X {

publiс:

 void f();

};

X operator+(const X&, const X&);

В вызывающей функции обычно пишется код наподобие x3=x1+x2, где x1, x2 и x3 — объекты типа X. Если оператор operator+ объявлен в том же пространстве имен, что и X, никаких проблем не возникает, и такой код отлично работает, поскольку оператор operator+ будет легко найден с помощью ADL.

Если же оператор operator+ не объявлен в том же пространстве имен, что и X, вызывающий код работать не будет. В этом случае имеется два способа заставить его заработать. Первый состоит в использовании явно квалифицированного оператора

x3 = N::operator+(x1, x2);

Грустная картина — невозможность использовать естественный синтаксис оператора, который, собственно, и был главной целью введения перегрузки операторов в язык программирования. Другой способ заставить работать приведенный ранее код — использовать инструкцию using:

using N::operator+;

// или: using namespace N;

x3 = x1 + x2;

Применение using — совершенно нормальная и приемлемая вещь (см. рекомендацию 59), но все проблемы решаются гораздо проще, если автор X изначально поступает корректно и помещает оператор operator+, работающий с объектами X, в то же пространство имен, где находится X.

'Оборотная сторона' этого вопроса рассматривается в рекомендации 58.

Примеры

Пример 1. Операторы. Операторы работы с потоками operator<< и operator>> для объектов некоторого класса X, вероятно, относятся к наиболее ярким примерам функций, которые вполне очевидно являются частью интерфейса класса X, но при этом всегда представляют собой свободные функции (это обязательное условие, поскольку левый аргумент этих операторов — поток, а не объект X). Та же аргументация применима и к другим операторам, не являющимся членами X. Убедитесь, что ваши операторы находятся в том же пространстве имен, что и класс, с которым они работают. Если у вас есть возможность выбора, лучше делать операторы и все прочие функции не членами и не друзьями класса (см. рекомендацию 44).

Пример 2. Прочие функции. Если автор X предоставляет именованные вспомогательные функции, которые получают в качестве аргументов объекты X, они должны находиться в том же пространстве имен, что и X. В противном случае вызывающий код, использующий объекты X, будет не в состоянии работать с этими именованными функциями без явной квалификации их имен или применения инструкции using.

Ссылки

[Stroustrup00] §8.2, §10.3.2, §11.2.4 • [Sutter00] §31-34

58. Храните типы и функции в разных пространствах имен, если только они не предназначены для совместной работы

Резюме

Оберегайте ваши типы от непреднамеренного поиска, зависящего от аргументов (argument- dependent lookup — ADL, известный также как поиск Кёнига); однако преднамеренный поиск должен завершаться успешно. Этого можно добиться путем размещения типов в своих собственных пространствах имен (вместе с непосредственно связанными с ними свободными функциями; см. рекомендацию 57). Избегайте помещения типов в те же пространства имен, что и шаблоны функций или операторов).

Обсуждение

Следуя данному совету, вы сможете избежать трудно обнаруживаемых ошибок в вашем коде и необходимости разбираться с очень тонкими моментами языка, с которыми вы просто не должны сталкиваться.

Вот реальный пример, который был опубликован в группе новостей:

#include <vector>

namespace N {

struct X { };

template<typename T>

int* operator+(T , unsigned) {/* некоторые действия */}

}

int main() {

 std::vector<N::X> v(5);

 v[0];

}

Инструкция v[0]; компилируется в некоторых реализациях стандартной библиотеки, но не во всех. Попробуем кратко пересказать эту длинную историю. Очень тонкая проблема связана с тем, что внутри большинства реализаций vector<T>::operator[] спрятан код наподобие v.begin()+n, и поиск имен для функции operator+ может достичь пространства имен (в нашем случае N) типа, для которого инстанцирован вектор (в нашем случае X). Достигнет ли поиск этого пространства имен или нет — зависит от того, как определен vector<T>::iterator в данной версии реализации стандартной библиотеки. Однако если поиск достигает N, то здесь он находит N::operator+. Наконец, в зависимости от используемых типов, компилятор может просто посчитать, что для vector<T>::iterator оператор N::operator+ имеет лучшее соответствие, чем оператор std::operator+ из реализации стандартной библиотеки (который и должен был быть вызван). (Один из способов избежать такой неприятности в реализации стандартной библиотеки — не использовать код v.begin()+n таким образом, что он вносит непреднамеренную точку настройки: либо надо изменить код так, чтобы тип v.begin() никаким образом не зависел от параметра шаблона, либо вызов operator+ следует переписать с указанием полного квалифицированного имени. См. рекомендацию 65.)

Коротко говоря, вряд ли вам удастся выявить истинную причину выводимого сообщения об ошибке. Если вам, конечно, повезет и вы получите это сообщение об ошибке, так как в случае невезения выбранный оператор N::operator+ окажется, к несчастью, вполне подходящим с точки зрения компилятора, и программа скомпилируется успешно, но вот результаты ее работы могут оказаться совершенно неожиданными...

Вы думаете, что вам не приходилось с этим сталкиваться? Попробуйте вспомнить, бывало ли такое в

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату