приспособлением, улучшающим цветовосприятие, являются масляные капли в колбочках сетчатки. Они функционируют, как цветовые фильтры, что позволяет различать больше оттенков в световом диапазоне электромагнитных волн. Зрительная система птиц позволяет воспринимать объекты, излучающие в ультрафиолетовом диапазоне, и поляризованный свет. Некоторые перелётные птицы могут непосредственно воспринимать направление электромагнитных полей, что позволяет им ориентироваться в любой точке на поверхности Земли.
У птиц отлично развит слух. Орган слуха состоит из внутреннего, среднего и зачатков наружного уха. Птицы воспринимают звуковые сигналы очень широкого диапазона. В этом отношении они могут намного превосходить многих млекопитающих как по диапазону, так и по чувствительности к слабым звукам. У птиц хорошо развит вестибулярный аппарат. Он состоит из полукружных каналов, отвечающих за рецепцию, связанную с угловым ускорением, и гравитационного рецептора (рецептора линейного ускорения). Все эти компоненты есть и у рептилий. Однако у птиц появился совершенный мозговой центр анализа вестибулярных и кинестетических сигналов — мозжечок.
301
§ 44. Условия возникновения мозга птиц
Если обратиться к морфологии птиц, то условия их специализации станут довольно очевидны. Основным сенсорным органом архаичных птиц было зрение. Этмоидное осязание, прекрасно развитое у рептилий, возникло у современных птиц уже вторично, а вкусовой рецепторный аппарат практически редуцирован. По сравнению с рептилиями у птиц получили дальнейшее развитие вестибулярный аппарат и слуховая система. Обонятельные луковицы, составляющие до 1/3 объёма полушарии переднего мозга у рептилий, не превышают 1/40 у современных птиц. Только немногие виды птиц (альбатрос, попугаи) способны хорошо анализировать запахи и использовать их для навигации и оценки качества пищи. Обоняние явно играло второстепенную роль у рептилийных предков птиц, а вомероназальная система редуцировалась. Невостребованность вомероназальной системы говорит о том, что даже половое обоняние утратило для этой группы значение. Однако нельзя утверждать, что вомероназальная система у предков птиц вообще отсутствовала. В дорсальной части полушарий переднего мозга находится небольшой участок, содержащий все основные фрагменты архи-, палео- и неокортекса. Это говорит о том, что предками птиц, безусловно, были довольно совершенные архаичные рептилии. Они явно обладали всем набором признаков, характерных для наиболее продвинутых представителей рептилий. По- видимому, выделение предков птиц в обособленную специализированную группу произошло к середине триаса, около 230 млн лет назад.
Вполне вероятно, что летающие, планирующие и бегающие птицеподобные рептилии с перьями возникали в этот период неоднократно. На это указывают находки археоптерикса
Рассмотрим нейробиологические характеристики и условия возникновения мозга настоящих птиц. Архаичные птицы не пользовались обонянием, вкусовым анализатором и развитыми этмоидными рецепторами рептилий. Слуховая система рептилий была сохранена,
302
но не получила на первом этапе эволюции птиц существенного развития. Зато птицы приобрели феноменальное зрение, которое позволяло тонко различать цвета и оттенки, воспринимать ультрафиолетовую автофлюоресценцию и различать детали предмета примерно в 15 раз лучше читателя (Levine, 1985).
Параллельно происходило интенсивное развитие вестибулярного аппарата и системы координации движений. Следствием интенсивного развития координационных сенсомоторных центров стало появление крупного мозжечка птиц со стратифицированной поверхностью и настоящими складками — бороздами и извилинами (см. рис. III-12; III-13, б). Мозжечок птиц стал первой структурой головного мозга позвоночных, которая имела кору и складчатое строение (Nieuwenhuys, 1998). Это произошло ещё до появления коры переднего мозга млекопитающих. Появление развитого мозжечка птиц таит в себе скрытое противоречие. Полёт в воздухе без такого мозжечка невозможен, а вне трёхмерной среды мозжечок возникнуть не мог. Таким образом, стратегическим приобретением мозга птиц стали две гипертрофированных структуры: зрительный участок крыши среднего мозга и мозжечок. Один анализаторный аппарат был направлен на то, чтобы увидеть добычу, а другой — на точную координацию движений при её поимке.
Ещё одним неврологическим парадоксом является координация движения крыльев. Она не могла возникнуть из планирующего полёта животных типа археоптерикса. К движению передних конечностей в условиях активного полёта предъявляются требования, совершенно необычные для наземных животных. Если бы активный полёт возник из планирования и лазанья по деревьям, то должны были бы сформироваться дополнительные сенсомоторные структуры в ретикулярной формации заднего мозга. Возникла бы своеобразная «полётная» сенсомоторная надстройка над системой управления четырьмя совершенными конечностями, приспособленными для лазанья по деревьям. Аналогичные события при выходе амфибий на сушу привели к появлению красного ядра, управляющего движениями конечностей. Однако у птиц принципиально новые структуры не возникли.
Центральной нервной системе вполне хватило структур, доставшихся предкам птиц от рептилий. На это указывает относительно небольшой размер заднего и продолговатого мозга. Количественные перестройки заднего и продолговатого мозга не затронули «рептилийных» принципов организации сенсомоторных отделов. Единственным исключением стал уже упомянутый мозжечок, координирующий работу всей сенсомоторной системы, а не только одних крыльев. Это
303
говорит о том, что развитие специализированной иннервации передних конечностей происходило эволюционным, а не революционным путём. По-видимому, они долго были относительно небольшими и использовались как вспомогательный, а не основной орган движения. Продолжительная функциональная второстепенность передних конечностей предков птиц освободила их неврологический субстрат для новой