где W - поступательное ускорение.
Поступательная сила инерции возникает при ускоренном поступательном движении. Например, вы сидите в кресле самолета и он начинает разгоняться для взлета. Вы чувствуете как вас вдавливает в кресло некая сила. Это и есть действие поступательной силы инерции. Казалось бы, какое отношение к вращению имеет поступательная сила инерции, если она возникает при поступательном ускорении? Тем не менее, с точки зрения четырехмерного пространства событий поступательное ускорение тоже есть вращение, но вращение в пространственно-временных плоскостях
Физики экспериментально установили, что силы инерции действуют только в ускоренных системах отсчета. С помощью преобразований координат, которые соответствуют переходу из ускоренной системы отсчета в инерциальную, силы инерции обращаются в нуль.
Безусловно, силы инерции надо рассматривать как реальные. Но порождены эти силы особыми полями - полями инерции. Эти поля можно рассматривать как проявление торсионных полей в нашей повседневной жизни.
Если в инерциальных системах отсчета силы инерции обращаются в нуль, то, как оказалось, порождающие их
Поле инерции может быть обращено в нуль с помощью преобразований вращательных координат. Это наглядно видно из формулы Френе w = cv, которая устанавливает связь между угловой частотой вращения w и кручением c (одной из компонент торсионного поля). Выбирая вращательные координаты так, чтобы, w=0, мы обращаем в нуль кручение c (т.е. поле инерции). Следовательно, поле инерции относительно, поскольку всегда можно найти систему отсчета, где оно оказывается равным нулю.
1.12. Три вида пространств Вайценбека.
Введение вращательной относительности в физику позволило обнаружить новые физические поля, названные
Простейшим пространством абсолютного параллелизма является трехмерное пространство Евклида или четырехмерное псевдоевклидово пространство. Кручение и кривизна этих пространств равна нулю, поскольку они описывают абсолютный вакуум
Напомним, что пространство событий относительных координат инерциальных систем отсчета обладает структурой пространства Евклида (трехмерный случай) или псевдоевклидова пространства (четырехмерный случай).
Рис. 13. Различные виды пространств абсолютного параллелизма: а) плоское пространство (риманова кривизна R и кручение Риччи Т равны нулю), б) пространство с нулевой римановой кривизной R и отличным от нуля кручением Риччи Т; в) пространство с не нулевой римановой кривизной R и не нулевым кручением Т.
Эти пространства представляют собой простейший вид геометрии абсолютного параллелизма и не несут какой-либо содержательной физической информации.
Рассмотрим теперь ситуацию, когда отсутствуют все поля кроме полей инерции. Можно, например, рассмотреть пространство событий относительных координат ускоренных локально инерциальных систем отсчета второго рода
В отличие от бессодержательной плоской геометрии, соответствующей абсолютному вакууму, эта геометрия наделена структурой, которая описывает некие первоначальные вихри (или
Самый общий случай геометрии Вайценбека соответствует пространству событий относительных координат ускоренных локально инерциальных систем отсчета первого и второго рода, т.е. фактически произвольно ускоренных систем. В этом случае, как риманова кривизна, так и кручение Риччи отличны от нуля
Перечислим некоторые важные свойства пространства Вайценбека:
а) для случая четырехмерных систем отсчета размерность этого пространства равна десяти;
б) в пространстве существуют две метрики - метрика Римана, описывающая бесконечно малое расстояние между двумя точками, и метрика Киллинга-Картана, представляющая собой поворот на бесконечно малый угол. Эта метрика исчезает, если кручение Риччи пространства обращается в нуль;
в) имеется десять уравнений движения (уравнений геодезических) - четыре поступательных и шесть вращательных;
г) из шести структурных уравнений геометрии Вайценбека следуют уравнения Эйнштейна с геометризированным тензором энергии-импульса материи, роль которой играют торсионные поля.