р( 3).
Напишите все ответы пролог-системы на следующие вопросы:
(a) ?- р( X).
(b) ?- р( X), p(Y).
(c) ?- р( X), !, p(Y).
Посмотреть ответ
5. 2. Следующие отношения распределяют числа на три класса - положительные, нуль и отрицательные:
класс( Число, положительные) :- Число > 0.
класс( 0, нуль).
класс( Число, отрицательные) :- Число < 0.
Сделайте эту процедуру более эффективной при помощи отсечений.
Посмотреть ответ
5. 3. Определите процедуру
разбить( Числа, Положительные, Отрицательные)
которая разбивает список чисел на два списка: список, содержащий положительные числа (и нуль), и список отрицательных чисел. Например,
разбить( [3, -1, 0, 5, -2], [3, 0, 5], [-1, -2] )
Предложите две версии: одну с отсечением, другую - без.
Посмотреть ответ
Назад | Содержание | Вперёд
Назад | Содержание | Вперёд
5. 3. Отрицание как неуспех
'Мэри любит всех животных, кроме змей'. Как выразить это на Прологе? Одну часть этого утверждения выразить легко: 'Мэри любит всякого X, если Х - животное'. На Прологе это записывается так:
любит( мэри, X) :- животное ( X).
Но нужно исключить змей. Это можно сделать, использовав другую формулировку:
Если Х - змея, то 'Мэри любит X' - не есть
истина,
иначе, если Х - животное, то Мэри любит X
.
Сказать на Прологе, что что-то не есть истина, можно при помощи специальной цели fail (неуспех), которая всегда терпит неудачу, заставляя потерпеть неудачу и ту цель, которая является ее родителем. Вышеуказанная формулировка, переведенная на Пролог с использованием fail, выглядит так:
любит( мэри, X) :-
змея( X), !, fail.
любит( Мэри, X) :-
животное ( X).
Здесь первое правило позаботится о змеях: если Х - змея, то отсечение предотвратит перебор (исключая таким образом второе правило из рассмотрения), а fail вызовет неуспех. Эти два предложения можно более компактно записать в виде одного:
любит( мэри, X) :-