том числе и в вакууме, где его скорость постоянна и равна 299792,5 км/сек. Поскольку скорость не зависит от частоты, можно характеризовать волну ее длиной, то есть расстоянием, которое волна проходит за один период колебаний. Для волн FM, период которых одна стомиллионная секунды, длина волны будет равна 300 000 км, деленные на сто миллионов, то есть 3 метра.
Радиоволнами называют самые длинные волны спектра, то есть волны длиной больше 1 мм (или частотой меньше 300 Ггц). Практически используют волны длиной до нескольких километров (частотой до 10 кГц).
Рассматривая теперь длины волны в порядке уменьшения, найдем последовательно инфракрасные волны с длиной от 0,8ц до 1 мм, видимый свет, цвет которого определяется длиной волны в диапазоне от 0,8ц (красный) до 0,4ц (фиолетовый). Дальше идет ультрафиолет в диапазоне от 0,4ц до 0,01ц. Далее - область рентгеновских лучей от одной сотой микрона, или от 100 А до 1 А; далее гамма-лучи -от 1 до 0,01 А; наконец, космические лучи с длиной волны менее 0,01 А.
Следует уточнить, что границы между этими областями проведены произвольно - так же, как внутри радиодиапазона между длинными, средними и короткими волнами. Не следует думать,
что между областями есть какие-то разрывы. Классификация связана с выбором способов для приема и передачи тех или иных волн. Но на границе радио- и инфракрасных волн можно послать очень короткие радиоволны, которые примет инфракрасный приемник, или, наоборот, радиоприемник может уловить отдаленное инфракрасное излучение с большой длиной волны. Подобные опыты проводились на границах всех диапазонов и неопровержимо доказали единство электромагнитных явлений.
Все это говорит о том, что никаких 'неизвестных' электромагнитных волн не существует, и это принципиально важно для нашей темы. Вся их гамма определена, прослежена и изучена. И только про эти волны достоверно известно, что они могут распространяться в пустоте.
Конечно, не исключено, что существуют волны и какой-то иной природы. В частности, теория относительности предсказывает существование гравитационных волн, распространяющихся со скоростью света. Эту гипотезу пока разделяют не все теоретики; ведется работа по ее проверке. Так, группе американских ученых под руководством Вебера после десятилетней работы, возможно, удалось создать и принять в лабораторных условиях гравитационные волны. В 1968-1969 годы Вебер наблюдал на своем аппарате сигналы, которые, возможно, положат начало 'гравитоастрономии'. Но пока еще природа этих сигналов не ясна может, это побочный эффект сейсмических или электромагнитных явлений.
В Гарвардском университете задуман эксперимент по измерению скорости этих новых волн. Автор проекта не исключает возможности, что она равна скорости света или даже больше ее. Так что выводы делать рано. Может быть, мы со
' Досье внеземных цивилизаций '''
своими электромагнитными волнами подобны человеку прошлого века, который попытался бы переговариваться с Америкой через тысячи километров в рупор.
Но пока ограничимся этими волнами. Их свойства нам хорошо известны. В частности, мы знаем, что они отлично рапространяются в космосе, их использовали для связи с космическими аппаратами на расстояния в сотни миллионов километров.
Поскольку эти волны существуют и поскольку наш нынешний технологический уровень, по всей вероятности, является нормальной стадией развития любой цивилизации, очевидно, что и другие технологические цивилизации их знают. Это рассуждение тем очевиднее, что звезды излучают много энергии в виде электромагнитных волн (света), и это количество энергии хорошо соответствует тому, которое выделяется при известных термоядерных реакциях. Такого не могло бы быть, если бы значительная доля энергии излучалась в ином виде. Помня, что излучение звезд лежит в основе жизни на любой планете, мы обязаны согласиться, что оно необходимо для существования цивилизации и на известной стадии эволюции должно быть хорошо изучено.
СВЕТОВЫЕ ВОЛНЫ: ЛАЗЕРЫ
Радиоэлектрические волны сегодня, бесспорно, лучше всего освоены как средство сообщения, но использоваться могут не только они. Можно, например, подумать, нельзя ли направить на планету, с которой мы хотим общаться, световые волны при помощи мощного прожектора.
Правда, соорудить такой прожектор нелегко. Обычные прожектора испускают весьма рассеянный световой луч. Так, в самых лучших из них
угол раствора конуса света равен 30 дуговым минутам. Это значит, что на Луне от такого прожектора получится пятно диаметром в 3 000 км, в несколько миллиардов раз менее яркое, чем солнечный свет.
Но открытый в 1950 году французским ученым профессором Кастлером эфект 'оптической накачки' радикально изменил ситуацию. Эта работа, за которую в 1966 году Кастлер получил Нобелевскую премию, позволила строить специальные аппараты - первый создал в 1960 году американец Таунс, назвавший его 'лазером' (Light Amplificator by Stimulated Emission of Radiation)*. Лазеры позволяют генерировать очень мощный и направленный световой луч. Возвращаясь к предыдущему примеру, скажем: с помощью лазера можно высветить на Луне круг диаметром всего лишь один километр.
Свойства и многочисленные применения лазера основаны на том, что он испускает весьма монохроматический луч, то есть луч с весьма точно определенной длиной волны (иными словами, строго определенного цвета). Обычные же источники света, например электрические лампочки или неоновые трубки, испускают свет сложный, содержащий широкий спектр волн различной длины. Такой свет называют некогерентным, а свет лазера - когерентней.
На это новое средство сразу же стали возлагать большие надежды. Начиная с 1961 года изучаются его возможности в области межзвездной связи. Первыми начали работу в этом направлении американцы Таунс и Шварц. Русский ученый Шкловский сразу же проявил большой интерес к этой затее. 'Если направить на Марс в момент
* Следует напомнить, что вместе с Таунсом Нобелевскую премию за это изобретение получили советские физики Басов и Прохоров. - Прим. пер.
противостояния лазерный луч, - писал он, - на поверхности планеты высветится круг диаметром 5-7 км. Свет лазера там будет виден как очень яркая звезда величиной минус 7 - в десять раз ярче, чем Венера на земном небе. Очевидно, что яркость такого света можно произвольно менять и таким образом передавать на небольшой участок марсианской территории любую информацию. Такой же пучок, отразившись на неосвещенной стороне Луны, даст пятно диаметром в 40 метров, и яркость его будет всего в сто раз меньше прямого солнечного света. Итак, перспективы связи внутри солнечной системы представляются весьма благоприятными'.
С тех пор лазеры многократно использовались для связи. Экипаж 'Аполлона-II' выгрузил на Луне лазерные рефлекторы, с помощью которых можно в любой момент определить расстояние от Земли до Луны с точностью до нескольких сантиметров. В ночь на 20 января 1968 года был успешно осуществлен интереснейший эксперимент. Два мощных лазера один был установлен на Столовой горе в Калифорнии, другой - на пике Китт в Аризоне - направили свои лучи на станцию 'Сервейер-7', прилунившуюся десятью днями ранее. В 9 часов 12 минут 58 секунд 'Сервейер' сфотографировал эти лучи и по телевидению ретранслировал на Землю.
Опыт увенчался успехом, но надо признать, что чувствительность аппарата была предельной. Он просто засек две точки света, и это считается большим техническим достижением. В то же самое время телевидение передало обратно целую картинку. Теперь же телевизионный аппарат передает очень подробное изображение Марса, pa- стояние до которого больше в сто раз!
По всей очевидности, от лазерной техники следует ожидать еще большого прогресса. Однако при
19В
передаче сообщений радиоволны обладают одним существенным преимуществом, о котором надо непременно сказать.
РАДИОСВЯЗЬ
Дальность передачи всегда ограничена фоновыми шумами, частью исходящими из самого приемника, частью из межзвездной среды. Пытаясь улучшить радиосвязь на Земле, американец Янский в 1932 году выделил в обычных радиопомехах галактический шум и тем основал радиоастрономию. И если за последние десятилетия шумы приемников стали существенно меньше и, очевидно, будут уменьшаться и впредь, то галактический шум никак не уменьшить, и с этим приходится мириться. Помехи особенно сильны на длинных волнах, что вызывает первое ограничение в спектре частот, выбираемых для связи. На другом же конце спектра появляются помехи другого рода - квантовые, еще более неизбежные, которые обозначают другой предел.
Квантовые помехи связаны с прерывистостью волн. Это новый аспект электромагнитного излучения, о котором мы еще не говорили. Между тем, известно, что это излучение переносит энергию дискретно, порциями (фотонами). Энергия фотона прямо пропорциональна частоте, а для передачи информации требуется, по крайней мере, одна такая 'световая частица'. Следовательно, чем выше частота, тем дороже обойдется передача в энергетическом отноше-нии. Вот что ограничивает нас на полюсе коротких волн.
Из всех этих факторов следует, что наиболее благоприятной для межзвездной связи будет диапазон радиоволн от 3 до 20 см, то есть частот от
197
10 Ггц до 1500 МГц. Нужно подчеркнуть, что этот диапазон благоприятен не только для связи между цивилизациями, находящимися на нашем техническом уровне, и не только в пределах Солнечной системы, но и во всей нашей Галактике, и выбор его основан на фундаментальных законах.
Заметим даже, что по теории коммуникаций можно доказать следующий любопытный факт. Чтобы передать большое