договоримся называть такое поле возмущений
Это не значит, что стоячие тепловые поля - неизменны вообще; всё зависит от поведения источника колебаний. Если источник получает постоянную подпитку, то амплитуда его колебаний будет возрастать, и будет активизироваться его стоячее тепловое поле: оно будет расширять зону своих движений. И наоборот: если источник колебаний теряет свою энергию, то его стоячее тепловое поле сжимается. Равновесие удерживается только при балансе поступающей к источнику и теряемой им энергий. К слову: подпитка и потеря энергии осуществлюется через то же тепловое поле.
Диапазон изменения активности стоячих тепловых полей достаточно широк, но имеет свои пределы. Если баланс энергий источника нарушается и он больше теряет, чем приобретает, то это приводит рано или поздно к успокоению источника — он прекращает свою пульсацию, — и его стоячее тепловое поле исчезает. С другой стороны, при избытке поступающей энергии источник будет увеличивать амплитуду своих колебаний и расширять зону действия своего стоячего поля, но и одновременно начнёт чаще испускать убегающие поперечные волны; в результате очень скоро наступит равновесие, но уже на новом энергетическом уровне; это — временный верхний предел активности теплового поля. Что же касается абсолютного верхнего предела, то он, скорее всего, определяется границей, за которой начинается распад источника колебаний, в частности атома.
На эфирную текучую среду в полной мере распространяется такой общеизвестный закон гидравлики и пневматики, как связь давления со скоростью; он гласит: давление текущей жидкости (газа) больше в тех сечениях потока, в которых скорость его движения меньше, и наоборот, в тех сечениях, в которых скорость его движения больше, давление меньше. Этот закон является всеобъемлющим для эфирной среды, и поэтому его значение трудно переоценить. Его действие распространяется от масштабов гигантских космических завихрений типа Солнечной системы до крошечных, вроде атома и электрона.
Уточним применительно к эфирной среде его формулировку: в нашем случае правильнее говорить не о связи давления со скоростью, а о влиянии движений элементарных эфирных частиц на их избыточную плотность. Это влияние является следствием наиболее общего закона — закона неравномерных деформаций эфирных шариков, который звучит так:
Предложенная формулировка закона позволяет, с одной стороны, конкретизировать охватываемое им явление, а с другой — исключить из сферы его действия случай с потоком параллельно движущихся эфирных шариков, в котором они полностью уравновешены (скорость в этом случае возникает как продукт выбора «не той» системы координат).
Чтобы не говорить каждый раз о неравномерности деформаций шарика, заменим её более привычным понятием движения. Для этого у нас есть все основания: неравномерность деформаций говорит о неуравновешенности сил; неуравновешенные силы порождают результирующую силу; она вызывает ускорение эфирного шарика, а ускорение может быть расценено как объективно существующее движение. Все другие движения, определяемые изменением положения или скоростью изменения положения, субъективны и лучше их движениями не называть. Короче говоря, чем больше неравномерность деформаций эфирного шарика, тем больше у него движений.
С учётом сказанного и того, что избыточная плотность эфира определяется степенью деформаций элементарных шариков, можно заключить, что,
Исключение составляют так называемые антипараллельные движения, то есть встречные; в них давление не уменьшается, а наоборот, растёт, и происходит это в результате лобового столкновения эфирных шариков. Исключение возникает потому, что в данном случае нарушается принцип изолированности эфирных пространств: встречные потоки являются внешними по отношению к каждому из них, и их движения препятствуют друг другу.
1.5. Электроны и атомы
Электроны и атомы представляют собой разные формы микрозавихрений эфира, И те и другие состоят исключительно из эфирных шариков, и никаких иных элементарных частиц в них нет. Кроме набора некоторого количества эфирных шариков для их построения требуются ещё два условия: наличие энергии и избыточное давление эфирной среды. Эти условия создаются и удачно сочетаются в моменты, исключительно важные для истории Вселенной, — в моменты столкновений эфирных облаков; тогда появляются на Свет первичные электроны и атомы; вторичные возникают в результате распада атомов, в частности электроны в основной своей массе появляются именно таким образом, и поставляет их нам в огромных количествах наше светило — Солнце: там распад атомов происходит более интенсивно, чем на планетах.
Электрон. Разберемся сначала с электронами, то есть с теми частицами, направленное движение которых известно как электрический ток. Если заставить три смежных элементарных шарика бегать друг за другом по кругу и ускорять их бег, то при достижении определённой скорости они приобретут устойчивое вращательное состояние; это и есть электрон. Он обречён на существование по двум причинам: его шарики не могут разбежаться, потому что сдавлены по периферии эфирной средой с избыточной плотностью, а остановиться не могут, так как не испытывают никакого трения. В конструкцию электрона, кроме указанных трёх бегающих шариков, входят ещё два торцовых, которые замыкают электрон и как бы являются его осью. В результате получается что-то вроде вращающегося колесика или волчка.
Масса вещества в электроне составляет всего пять эфирных шариков, но его инерция значительно больше их суммарной инерции; и возникает это увеличение за счёт вращения. В результате инерция электрона в пересчёте на принятый эталон массы составляет 9,11 на 10 в минус двадцать восьмой степени грамма.
Средняя плотность эфирных шариков в том пространстве, которое занимает электрон, меньше плотности окружающей эфирной среды. Это следует из закона неравномерных деформаций эфирных шариков: каждый бегающий по кругу электронный шарик удерживается на своей орбите центростремительным ускорением, создаваемым наружным окружением, и поэтому имеет увеличенную деформацию в точках контакта с ним, изнутри же он практически нисколько не сдеформирован, так как его осевые шарики замыкаются сами на себе и на него не давят; отсюда следует, что отмеченная неравномерность деформаций приводит к уменьшению его общей деформации, то есть к уменьшению средней плотности. Менее плотный электрон при наличии градиента эфирного давления будет вытесняться в сторону меньшего давления; и этим объясняется стремление электронов радиационного слоя Земли прорваться в виде молний к её поверхности.
Пониженная средняя эфирная плотность наблюдается не только в границах самого электрона, но и в его ближайших окрестностях: его окружают два накладывающихся одно на другое стоячих тепловых поля. Первое из них создаётся бегающими шариками электрона: каждый из прилегающих шариков получает от них за оборот по три удара, направленных под углом в сторону вращения; в результате прилегающий к электрону слой эфирных шариков совершает небольшую радиальную пульсацию и закручивается в направлении вращения самого электрона. Радиальная пульсация распространяется на последующие слои эфирных шариков с уменьшением амплитуды в квадрате от удаления.