которых прекратилась термоядерная реакция и обусловленные ею высокие температуры и давление не могут больше противостоять гравитационным силам сжатия, еще более драматична. Сила сжатия достигает такой величины, что протоны сливаются с электронами, превращаясь в нейтроны, лишенные электрического заряда. Возникает нейтронная звезда. Ее средний радиус всего 10 км, а плотность 1018 кг/м3 — наперсток с такой плотностью потянул бы в земных условиях на несколько миллиардов тонн!

Продолжая вращаться вокруг своей оси, такая звезда испускает электромагнитное излучение в радио-, оптическом и рентгеновском диапазонах. А поскольку поверхность ее не вполне однородна, ее излучение пульсирует — в некоторых случаях с периодом порядка сотых долей секунды.

Когда в 1967 г. первая из таких звезд была обнаружена английской обсерваторией Джодрел-бэнк в Кембридже, то наблюдавшие ее Д. Белл и Э. Хьюиш первоначально подумали, что им удалось принять сигналы от внеземной цивилизации. Удостоверившись в естественном происхождении импульсов излучения, они назвали их источник пульсаром. И лишь потом теоретики отождествили пульсар с предсказанным ранее объектом — нейтронной звездой.

ГОРИЗОНТ СОБЫТИЙ

В 1916 г. немецкий физик-теоретик Карл Шварцшильд исследовал решения общей теории относительности, незадолго до этого опубликованной Эйнштейном. Ему удалось показать, что если тело массой М сжать в сферу, радиус которой меньше некоторой критической величины, то пространство-время вблизи этого радиуса искажается настолько сильно, что свет не может покинуть эту сферу. Позднее эту критическую величину назвали радиусом Шварцшильда. Четырехмерное пространство-время, замкнутое в сфере с таким радиусом, удерживает внутри себя материальные объекты и сигналы любой природы, ничего не выпуская наружу. Область пространства, ограниченную радиусом Шварцшильда, вторично открытую на кончике пера, ученые и назвали черной дырой.

Как только степень сжатия угасающей звезды достигает шварцшильдовского радиуса, она должна исчезнуть для внешнего наблюдателя. Эту границу черной дыры назвали горизонтом событий — никакие сведения о том, что происходит за этой чертой, не могут поступить к внешнему наблюдателю.

Любой внешний объект, достигнувший этой границы, никогда уже не сможет вернуться назад. Его ожидает вечное падение к центру черной дыры. Горизонт событий — граница, которая имеет всего одну сторону.

Теоретически в черную дыру может превратиться любой объект. Например, для звезды с массой нашего Солнца радиус Шварцшильда равен 3 км, а для гипотетического астрофизического объекта с массой Земли — всего 1 см. Плотность вещества такого «землеподобного» объекта оказалась бы чудовищно большой — Ю30 кг/м3! И неудивительно: чтобы уравновесить наперсток с таким веществом, на весы пришлось бы положить саму Землю.

К счастью для нас, нынешнее состояние Вселенной таково, что ни Солнце, ни Земля превратиться в черные дыры не могут. Звезды, масса которых превосходит солнечную вдвое или втрое, в конце жизни становятся белыми карликами или нейтронными звездами.

Но известно достаточно много более массивных звезд. Некоторые из них, завершая свой жизненный цикл, имеют вполне реальный шанс превратиться в черные дыры. Черная дыра с массой, на порядок превосходящей солнечную, будет иметь радиус около 30 км и плотность 1014 кг/м3.

Однако теория не исключает существования и еще более массивных черных дыр. Если допустить, что центральная часть галактики имеет массу в сто миллионов солнц и сколлапсирована в черную дыру, то ее горизонт событий будет иметь радиус около 300 миллионов километров, т. е. вдвое больше радиуса земной орбиты. А плотность вещества внутри такой дыры будет совсем невелика она равна плотности воды.

На самых ранних стадиях существования нашей Вселенной могли возникнуть еще более удивительные объекты — черные дыры микроскопических размеров. Могли существовать даже мини-дыры размером с атомное ядро, но с массой земной горы приличных размеров. Вполне возможно, что некоторые из подобных удивительных мини черных дыр дожили и до наших дней. Остается только найти способ, чтобы их обнаружить.

ПУТЕШЕСТВИЕ В НЕДРА

Теоретики затрудняются предсказать, что происходит за горизонтом событий, внутри черной дыры. Чтобы хотя бы в некоторой степени разобраться в этом вопросе, поставим смелый мысленный эксперимент — снарядим в окрестность черной дыры пилотируемую экспедицию. Что предстоит испытать отважным астронавтам?

Если масса черной дыры не очень велика, то, приближаясь к горизонту событий, астронавты попадут в сферу действия могучих приливных сил. Эти силы обусловлены различием гравитационного воздействия на различные участки протяженного тела. Поэтому, чтобы с первых шагов не сорвать нашу экспедицию, выберем черную дыру достаточно большой массы — в этом случае величина приливных сил будет не очень значительной.

Передатчик, установленный на борту нашего звездолета, непрерывно посылает сигналы постоянной частоты. Эту частоту астронавты выверяют по собственным часам. Расчет, выполненный по формулам теории относительности, позволяет предсказать удивительный эффект: с приближением звездолета к горизонту событий интервалы между сигналами будут все время увеличиваться — с точки зрения земного наблюдателя. Но сами астронавты этих изменений не заметят ход их часов останется прежним.

Наконец, в тот момент, когда звездолет достигнет горизонта событий, с нашей точки зрения его часы остановятся навсегда — для нас звездолет будет казаться вечно зависшим над границей черной дыры. Те же самые события будут восприниматься совершенно иначе астронавтами, находящимися на борту звездолета. Их часы будут идти в прежнем темпе. Звездолет продолжит падение по направлению к центру черной дыры, но теперь для него пространственная координата — радиус — будет выполнять функцию времени. Что ждет наших астронавтов, решившихся на этот отчаянный шаг — пересечь горизонт событий? Некоторые теоретики утверждают: их путешествие будет невероятно увлекательным — они попадут в другую Вселенную. Возможен и другой теоретически мыслимый вариант: они окажутся в той же самой Вселенной, но в совершенно иной исторической эпохе. Быть может, в далеком прошлом, а может — ив будущем. Не является ли черная дыра машиной времени? Кто знает…

НУЖНО ЛИ НАЗЫВАТЬ ИХ ЧЕРНЫМИ?

Если вблизи черной дыры находится какое-то другое небесное тело или просто сильно разреженный межзвездный газ, то они будут притягиваться ею и падать, словно в бездонную пропасть. Масса черной дыры будет при этом возрастать, возрастет и площадь горизонта событий. То же самое произойдет, если сольются две черные дыры.

А вот уменьшиться площадь горизонта событий не может ни при каких обстоятельствах. В этом отношении ее поведение напоминает фундаментальное свойство совершенно другой физической характеристики — энтропии. Второе начало термодинамики гласит: в любом физическом процессе энтропия только увеличивается либо остается постоянной. Но точно так же ведет себя и горизонт событий черной дыры.

Теоретики воспользовались этой аналогией, чтобы лучше разобраться в свойствах черных дыр. Проводя эту параллель и приписывая черной дыре конечное значение энтропии, приходится признать, что в этом случае черная дыра должна также иметь и конечную температуру. Но если у черной дыры есть температура, то она должна излучать тепловую энергию, т. е. делать то, на что она не способна в принципе. Возник, казалось бы, почти неразрешимый парадокс!

Снять этот парадокс сумел английский физик-теоретик Стивен Хокинг, рассмотревший квантовые свойства черных дыр. Один из основных постулатов квантовой механики — соотношения неопределенности Гейзенберга — гласит: нельзя одновременно с высокой точностью определить координаты и скорость частицы. Чем точнее мы определяем координаты, тем более неопределенным оказывается значение скорости. И наоборот: попытка поточнее измерить скорость неизбежно ведет к тому, что значения координат все более и более размываются в пространстве. То же самое происходит с измерением энергии частицы в некоторый момент времени.

Развивая этот подход, Хокинг показал, что вблизи горизонта событий должны испускаться частицы — фотоны, электроны и нейтрино, причем распределение их энергии по спектру должно соответствовать

Вы читаете «Если», 1999 № 01-02
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату