(х + у)p = хр + Cp1xp- 1y + Ср2хр- 2y2 +… + ур. (7.5.2)

Здесь первый и последний коэффициенты равны единице. Средними биномиальными коэффициентами являются

Cp1 = p/1, Ср2 = p(p-1)/(1  2), Ср3 = p (p-1)(p-2)/(1 • 2 • 3)… (7.5.3)

и вообще

Срr = p(p-1)(p-2)… (p — r + 1)/(1 2… r), (7.5.4)

Так как эти коэффициенты получаются в результате последовательного умножения на бином (х + у), то ясно, что они являются целыми числами.

С этого момента будем считать, что р — простое число. Чтобы записать эти коэффициенты в целочисленном виде, необходимо сократить все общие множители знаменателя

1 • 2 • 3 •… • r

и числителя

p(p-1)(p-2)… (p — r + 1)

Однако знаменатель не содержит простого множителя р, поэтому после сокращения число р останется множителем в числителе. Мы делаем вывод.

Все биномиальные коэффициенты (кроме первого и последнего) в выражении (7.5.2) делятся на р, если р — простое число.

Пусть теперь х и у в выражении (7.5.2) будут целыми числами. Если мы рассмотрим формулу (7.5.2) как сравнение по модулю р, то можно сделать вывод, что для любых целых чисел х и у и простого р

(х + у)pхр + ур (mod p). (7.5.5)

В качестве примера возьмем р = 5:

(х + у)5 = х5 + 5х4у + 10x3y2 + 10x2y3 + 5xy4 + у5.

Так как все средние коэффициенты делятся на 5, то

(х + у)5х5 + у5 (mod 5)

в соответствии с (7.5.5).

Из сравнения (7.5.5) можно сделать важные выводы. Применим его для случая х = у = 1. Получаем

2p = (1 + 1)p ≡ 1p + 1p = 2 (mod p).

Возьмем затем х = 2, у = 1 и найдем, что

3p = (2 + 1)p ≡ 2p + 1p;

теперь, используя предыдущий результат, 2p ≡ 2 (mod p), получаем

2p + 1p ≡ 2 + 1 ≡ (mod p).

Итак, 3p ≡ 3 (mod p). Далее для х = 3, у = 1 получаем

4p ≡ 4 (mod p).

Используя этот процесс, можно доказать по индукции, что аp ≡ a (mod p) для всех значений числа

а = 0, 1…. р -1. (7.5.6)

Случаи a = 0 и а = 1 очевидны. Так как каждое число сравнимо (mod р) с одним из остатков, записанных в (7.5.6), мы делаем вывод:

для любого целого числа а и любого простого числа р

apa (mod p). (7.5.7)

Это утверждение обычно называют теоремой Ферма, хотя некоторые авторы называют ее малой теоремой Ферма, чтобы отличить от последней теоремы Ферма, или гипотезы Ферма, о которой мы упоминали в § 3 главы 5.

Пример. Для р = 13 и а = 2 мы находим: 13 = 8+ 4 + 1, т. е. 213 = 28+4+1 = 2 2• 21. Так как 24 = 16 ≡ 3 (mod 13), 28 ≡ 9(mod 13), то

213 = 28 • 24 • 2 ≡ 9 • 3 • 2 ≡ 2 (mod 13),

как и утверждает теорема Ферма.

В соответствии с правилом сокращения для сравнений, сформулированном в конце § 3, мы можем сократить общий множитель а в обеих частях записи теоремы Ферма (7.5.7) при условии, что число а взаимно просто с числом р, являющимся модулем сравнения. Это дает следующий результат:

если а является целым числом, не делящимся на простое число р, то

ap-1 ≡ 1 (mod p). (7.5.8)

Этот результат также называют теоремой Ферма.

Пример. Когда а = 7, р = 19, мы находим, что

72 = 49 ≡ 11 (mod 19)

74 ≡ 121 ≡ 7 (mod 19),

78 ≡ 49 ≡ 11 (mod 19),

716 ≡ 121 ≡ 7 (mod 19),

и это дает

ap-1 = 718 = 716 • 72 ≡ 7 • 11 ≡ 1 (mod 19),

что соответствует утверждению (7.5.8).

В качестве приложения теоремы Ферма вновь рассмотрим треугольники Пифагора, обсужденные в

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату