он будет падать на понедельник. Это не слишком сложно, однако, эта простая схема нарушается високосными годами. Это происходит каждый четвертый год, тогда номер дня недели увеличивается на 2. Более того, возникает дополнительная трудность из-за того, что добавочный день високосного года прибавляется не в начале или конце года, а 29 февраля. Поэтому, для удобства, в общей формуле для вычисления W, которую мы дадим ниже, договоримся считать март — первым месяцем, апрель — вторым и т. д., при этом январь будет одиннадцатым месяцем, а февраль — двенадцатым месяцем предшествующего года.
Но на этом наши трудности не кончаются. В юлианском календаре, введенном по указу Юлия Цезаря, было принято, что год точно равен 365 1/4 дня, в соответствии с правилом високосного года. Однако это не совсем правильно, так как астрономический год в действительности равен 365,2422 дня.
Эта маленькая ошибка вызвала постепенный сдвиг сезонов по отношению к календарю, например, в шестнадцатом веке день весеннего равноденствия (первый день весны) пал на 11 марта вместо 21 марта, как это должно было быть.
Чтобы исправить положение, в 1582 году папа Григорий XIII после долгих колебаний произвел реформу календаря в странах с католическим вероисповеданием. В том году было опущено 10 дней, а именно, пятницу 5 октября стали считать пятницей 15 октября. Более того, для корректирования календаря были введены следующие григорианские правила для високосных лет.
Годы столетий
1700, 1800, 1900, 2100, 2200, 2300…,
в которых количество столетий не делится на 4, не считаются високосными годами. Оставшиеся годы столетий
1600, 2000, 2400…
продолжают считаться високосными годами. Получается очень хорошее приближение к правильной длине года, однако капельку длиннее. Было предложено не считать годы 4000, 8000… високосными вопреки григорианскому правилу; но так как этот вопрос еще открыт и не имеет отношения к ближайшему будущему, то мы не будем это принимать в нашей формуле.
Предположим теперь, что нам задана дата:
где
Квадратные скобки, фигурирующие в этой формуле, были введены в § 3 главы 4 для обозначения наибольшего целого числа, не превосходящего числа, стоящего внутри этих скобок.
Пример. День Пирл-Харбора[12], 7 декабря 1941 г. Здесь
так что
т. е. это было в воскресенье.
и
таким образом, первый день следующего столетия[13] будет субботой.
При пользовании этой формулой следует помнить, что ее нельзя применять для того периода, когда еще не был введен григорианский календарь. В Англии и английских колониях он был введен в 1752 году, при этом из календаря было опущено одиннадцать дней: 3 сентября стали считать 14 сентября по новому стилю[14].
Оставшаяся часть этого параграфа предназначена для тех, кто хотел бы познакомиться с выводом формулы (8.2.2). Вывод формулы проведем в два этапа. Во-первых, определим номер дня недели для 1 марта произвольного
Если бы не было високосных лет, то мы могли бы найти
Принимая во внимание високосные годы и предполагая, что они следуют регулярно каждый четвертый год, мы должны прибавить к первому выражению еще следующее:
[1/4 (100
Однако это чуть больше, чем нужно, потому что год окончания каждого столетия обычно не бывает високосным, и ввиду этого мы должны вычесть число
Но мы должны еще учесть следующее исключение: если
[1/4 (
Теперь мы сложим выражение (8.2.3) и (8.2.4), вычтем (8.2.5) и прибавим (8.2.6). Это даст нам номер дня недели 1 марта
Чтобы упростить его, мы приводим числа по модулю 7 и таким образом получаем
Применим эту формулу к 1968 году, в котором 1 марта падает на пятницу, следовательно,
Здесь
и мы находим
Это даст нам, что
для номера дня недели 1 марта