Шестиугольные числа, и вообще
Проводя анализ такого геометрического представления чисел, можно получить несколько простых соотношений. Остановимся лишь на одном примере. Уже давно было известно, что складывая последовательно нечетные числа, мы все время будем получать квадраты, например,
1 + 3 = 4, 1 + 3 + 5 = 9, 1 + 3 + 5 + 7 = 16 и т. д.
Чтобы доказать это соотношение, достаточно лишь взглянуть на рис. 6, на котором изображены последовательно вложенные квадраты.
1. Докажите по индукции общую формулу (1.4.1) для треугольных чисел.
2. Докажите формулу (1.4.4) для пятиугольных чисел.
3. Докажите, что произвольное
½
§ 5. Магические квадраты
Если вы играли в «шафлборд»[1], вы можете вспомнить, что девять квадратов, на которых вы размещаете свои фишки, занумерованы числами от 1 до 9, расположенными так, как на рис. 7. Здесь числа в каждом столбце и в каждой строчке, а также в каждой из диагоналей, дают при сложении одно и то же число 15.
В общем случае
Пример магического квадрата с 42 = 16 числами изображен на рис. 8. Магическая сумма для него равна 34.
Для каждого числа
Но сумма всех чисел от 1 до
1 + 2 +… +
что следует из формулы для суммы
n s = ½ (
то
Таким образом, если число
Во времена средневековья странные свойства этих квадратов считались волшебными и поэтому магические квадраты служили талисманами, защищающими тех, кто их носил, от многих несчастий. Часто воспроизводится магический квадрат, присутствующий на знаменитой гравюре Альбрехта Дюрера «Меланхолия» (она помещена на фронтисписе нашей книги). Этот квадрат воспроизведен с большим увеличением на рис. 9; при этом мы получили также возможность увидеть, как во времена Дюрера изображались цифры. Средние числа в последней строке изображают год, — 1514, в котором, как мы знаем, была создана эта гравюра. Возможно, что Дюрер, положив в основу именно эти числа, нашел остальные методом проб и ошибок. Можно доказать, что при
и выясним, какими могут быть эти девять чисел.
Рис. 9.
Вначале покажем, что центральное число
4s = 4 × 15 = 60 =
=
= 3