1. Мог ли Дюрер использовать вместо своего квадрата, изображенного на рис. 9, какие-либо другие квадраты, в которых тот же год фигурировал таким же образом?
2. Дюрер прожил до 1528 г. Смог ли бы он датировать какую-нибудь из своих более поздних картин таким же способом?
3. Изучите некоторые свойства магического круга Б. Франклина (рис. 12).
ГЛАВА 2
ПРОСТЫЕ ЧИСЛА
§ 1. Простые и составные числа
Должно быть, одним из первых свойств чисел, открытых человеком, было то, что некоторые из них могут быть разложены на два или более множителя, например,
6 = 2 • 3, 9 = 3 • 3, 30 = 2 • 15 = 3 • 10,
в то время как другие, например,
3, 7, 13, 37,
не могут быть разложены на множители подобным образом. Давайте вспомним, что вообще, когда число
является произведением двух чисел
с = 1 • с = с • 1. (2.1.2)
Соответственно мы называем числа 1 и
Любое число
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
Все остальные числа, кроме 1, являются составными. Мы можем сформулировать следующее утверждение:
Теперь мы подошли к нашей первой важной задаче в теории чисел: как определить, является ли произвольное число простым или нет, и в случае, если оно составное, то как найти какой-либо его нетривиальный делитель?
Первое, что может прийти в голову, — это попытаться разделить данное число
ab > √
что невозможно. Таким образом, чтобы узнать, имеет ли число
Очевидно, что для больших чисел этот метод может быть очень трудоемким. Однако здесь, как и при многих других вычислениях в теории чисел, можно использовать современные методы. Довольно просто запрограммировать на ЭВМ деление данного числа
Другим очень простым методом является применение таблиц простых чисел, т. е. использование простых чисел уже найденных другими. За последние 200 лет было составлено и издано много таблиц простых чисел. Наиболее обширной из них является таблица Д. X. Лемера, содержащая все простые числа до 10 000 000. Наша таблица 1 содержит все простые числа до 1000.
Таблица 1
Простые числа среди первой тысячи чисел
Некоторые энтузиасты-вычислители уже подготовили таблицы простых чисел, превосходящих 10 000 000. Но, по-видимому, не имеет большого смысла идти на значительные затраты и усилия, чтобы опубликовать эти таблицы. Лишь в очень редких случаях математику, даже специалисту в теории чисел, приходится решать вопрос о том, является ли какое-то большое число простым. Кроме того, большие числа, о которых математик хочет узнать, являются они составными или простыми, не берутся им произвольно. Числа, которые он хочет исследовать, обычно появляются в специальных математических задачах, и, таким образом, эти числа имеют очень специфическую форму.
1. Какие из следующих чисел являются простыми: а) год вашего рождения; б) текущий год; в) номер вашего дома.
2. Найдите простое число, следующее за простым числом 1973.
3. Заметим, что числа от 90 до 96 включительно являются семью последовательными составными числами; найдите девять последовательных составных чисел.
§ 2. Простые числа Мерсенна
В течение нескольких столетий шла погоня за простыми числами. Многие математики боролись за честь стать открывателем самого большого из известных простых чисел. Разумеется, можно было бы