123 = 61 • 2 + 1,

61 = 30 • 2 + 1,

30 = 15 • 2 + 0,

15 = 7 • 2 + 1,

7 = 3 • 2 + 1,

3 = 1 • 2 + 1,

1 = 0 • 2 + 1,

Следовательно,

197110 = (1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1)2.

Ранее мы отмечали, что в двоичной системе числа имеют более длинные выражения, следовательно, становится труднее с первого взгляда оценить величину числа. По этой причине в языке ЭВМ часто используется восьмеричная система счисления (с основанием 8). Это является лишь незначительным изменением двоичной системы, которое получается разбиением бит в числе на группы по три. Это можно представить себе как систему с основанием

b = 8 = 23.

Коэффициентами при этом являются восемь чисел

0 = 000, 4 = 100, 1 = 001, 5 = 101, 2 = 010, 6 = 110, 3 = 011, 7 = 111.

В качестве иллюстрации возьмем число 1971 из рассмотренного выше примера; в восьмеричной системе оно представляется как

1971 = 011, 110, 110, 011 = (3, 6, 6, 3)8.

Таким образом, этот способ записи незначительно отличается от предыдущего. В действительности, такое деление на группы нам хорошо знакомо по обычным десятичным числам: при записи и произнесении большого числа мы обычно делим его цифры на группы по три, например,

N = 89 747 321 924.

Таким образом, можно сказать, что это является представлением нашего числа при основании b = 1000= 103.

В компьютерах иногда используются и другие представления чисел. Предположим, что мы хотим записать десятичное число, скажем, N = 2947, в ЭВМ, работающей в двоичной системе. Тогда, вместо того чтобы полностью менять N на двоичное число, можно было бы изменить лишь цифры этого числа

2 = 0010,

9 = 1001,

4 = 0100,

7 = 0111

и, таким образом,

N = 0010, 1001, 0100, 0111.

Такие числа известны как кодированные десятичные числа. Этот метод иногда называется «системой 8421», так как эти десятичные цифры представляются в виде сумм двоичных единиц

0 = 0000, 1 = 0001, 2 = 0010,

22 = 4 = 0100, 23 = 8 = 1000.

Такие кодированные десятичные числа неудобны для всех видов вычислений, но не всегда целью ЭВМ являются вычисления. Тем же образом, любая буква алфавита или любой другой символ могут быть приписаны какому-нибудь двоичному числу. Это означает, что любое слово или предложение можно запоминать как двоичное число. Таким образом, если бы мы были соответствующим образом натренированы и имели бы дело со столь же подготовленной аудиторией, то могли бы общаться лишь с помощью бит.

Система задач 6.5.

1. Найдите двоичное представление чисел Ферма (§ 3, гл. 2)

2. Найдите двоичные представления четных совершенных чисел (§ 4, гл. 3)

§ 6. Игры с числами

Существует множество видов игр с числами, некоторые из которых были известны еще в средние века. Большинство из них не представляет интереса для теории чисел, скорее всего, они подобно магическим квадратам принадлежат к классу кроссвордов с числами. Некоторые из них проиллюстрируем примерами.

Перед вами телеграмма, посланная школьником домой, с настоятельной просьбой:

  S E N D

  M O R E

_________

M O N E Y[11]

Будем рассматривать эту схему, как сложение двух четырехзначных чисел SEND и MORE, в сумме дающих число MONEY. Каждая буква означает определенную цифру. Задача состоит в том, чтобы определить, какие это цифры. Так как всего 10 цифр, то в каждой такой задаче может фигурировать не более 10 букв, в этом примере 8. В идеальном случае задача должна иметь единственное решение.

В нашем примере очевидно, что M = 1, так как М — первая цифра либо суммы S + М, либо S + M+1, где S и М — числа, не превосходящие числа 9. Тогда для числа S имеются две возможности:

S = 9 или S = 8,

так как либо S + 1, либо S + 1 + 1 есть двузначное число. Установим сначала, что S не может быть цифрой 8, ибо, если бы S было 8, то должен был бы быть перенос из колонки сотен, что дает

S + M + 1 = 8 + 1 + 1 = 10

при сложении в колонке сотен. Следовательно, О должно было бы быть нулем и наше послание читалось бы так:

  8 Е N D

  1 0 R Е

_________

1 0 N Е Y

Но, исследуя колонку сотен, находим, что обязательно должен быть перенос из колонки десятков (иначе Е + 0 = Е, а не N), и так как Е ≤ 9, то

E + 0 + 1 = 10.

Это вынудило бы нас положить N = 0, но мы уже знаем, что О = 0, поэтому такой случай невозможен, и мы заключаем, что S = 9, и послание теперь читается так:

  9 Е N D

  1 0 R E 

_________

1 0 N Е Y

Так как Е ≠ N, то сложение в колонке сотен приводит к условию E + 1 = N,

и

  9  Е E+1 D

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату