Недавно этим способом в Йельском университете на ЭВМ IBM 7094 были проверены все числа до одного миллиона. В результате была получена коллекция из 42 пар дружественных чисел; некоторые из них оказались ранее неизвестными. Все пары дружественных чисел до 100 000 приведены в табл. 2. При помощи этого метода, как нетрудно видеть, одновременно «вылавливаются» и совершенные числа. Если возникает желание продолжать поиски дальше, то, конечно, это можно сделать, но придется затратить большое количество машинного времени.
Таблица 2
Дружественные числа до 100 000
В действительности мы очень мало знаем о свойствах пар дружественных чисел, однако, можно на основе наших таблиц высказать несколько предположений. Например, отношение одного из них к другому, по-видимому, должно все больше и больше приближаться к 1 по мере того, как они увеличиваются. Из таблицы видно, что эти числа бывают либо оба четными, либо оба нечетными, но не было найдено случая, когда одно число четно, а другое нечетно, хотя поиски дружественных чисел такого вида были проведены среди всех чисел
ГЛАВА 4
НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ И НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ
§ 1. Наибольший общий делитель
Откровенно говоря, мы надеемся, что многое в этой главе окажется для вас знакомым.
В ней рассматриваются понятия, с которыми вы познакомились в школе, как только научились обращаться с обыкновенными дробями. Единственным оправданием включения этого материала является желание освежить его в вашей памяти. Мы также надеемся, что приведенное изложение материала явится более систематическим, чем то, к которому вы привыкли.
Возьмем некоторую дробь
Эта операция не изменяет значения дроби, например,
24/36 = 8/12 = 2/3.
Если число
Когда известны разложения чисел
Здесь мы договариваемся записывать разложения чисел
но с условием, что мы допускаем возможность использования показателя степени, равного 0. Например, если
то
Из формулы (4.1.1) следует, что любой делитель
Из этого обсуждения мы можем сделать вывод: любые два натуральных числа