всяком случае
Поскольку планета шарообразна, солнечные лучи нагревают ее экватор сильнее, чем полюса, — экваториально-полярный температурный градиент. Любой
Конвекция в гидросфере — это теплые морские течения, которые обогревают высокоширотные области точно так же, как водяное отопление — наши квартиры. Движущей силой конвекционных токов, как мы помним из главы 2 (о мантийной конвекции), являются возникающие в среде архимедовы силы плавучести: когда часть вещества «тонет» или «всплывает», этот объем — в силу связности среды — замещается веществом, поступающим из другой ее точки. В нашем случае токи в Мировом океане могут возникать за счет того, что «тонет» либо холодная (четырехградусная) вода в высоких широтах (термическая циркуляция), либо избыточно осолоненная (в результате испарения) вода на экваторе (галинная циркуляция). При термической циркуляции вода (рис. 34,
Говоря о конвекции в атмосфере, необходимо учитывать, что здесь тепло переносится главным образом водяным паром: тепловая энергия, затраченная на испарение воды, выделяется там, где этот пар, перенесенный воздушными течениями, превратится обратно в жидкость, т.е. выпадет в виде осадков. Атмосфера каждого из полушарий распадается на три широтных сегмента[43] — конвективные ячейки (экваториальная, умеренных широт и приполярная). В каждой из ячеек существует относительно замкнутая воздушная циркуляция, причем направления циркуляции в граничащих между собой ячейках противоположны («по часовой стрелке» — «против» — опять «по») — в точности, как в цепи шестеренок (рис. 34,
Теперь вернемся к криоэрам и термоэрам. Ныне (как, видимо, и вообще в криоэрах) основной приток тепла в высокие широты осуществляется мощными теплыми течениями вроде Гольфстрима. При этом возникает температурная аномалия: океан в районе 60-х широт существенно (почти на 20 градусов!) теплее, чем следовало бы из соображений геометрии планеты. Однако это обстоятельство имеет и оборотную сторону: на материке развивается мощный зимний
В термоэры (в частности, в мезозое) ситуация, судя по всему, была принципиально иной. А. Г. Пономаренко (1996), предложивший соответствующую модель, обращает внимание на два обстоятельства, кажущиеся необъяснимыми с нынешних позиций. Во-первых, приполярные области были очень теплыми (исходя из состава их фауны и флоры), что требует куда более интенсивного, чем ныне, теплопереноса от экватора к полюсу. Во-вторых, в тогдашней экваториальной зоне (где ныне находятся дождевые тропические леса) растительность была явно ксерофильной и возникали
При отсутствии полярных шапок температура океанической воды не падает до 4°С, когда ее плотность максимальна, и не происходит полного опускания поверхностных вод. Компенсирующие такое погружение мощные теплые течения не возникают; теплая вода из экваториальной зоны практически не отводится, она осолоняется за счет испарения и погружается на дно; галинная циркуляция здесь резко доминирует над термической. Поверхностные слои океанов в умеренных широтах относительно холодны, и температурного контраста между океанами и материками не возникает; не возникает и зимнего антициклона, так что ничто теперь не мешает муссону переносить теплый воздух и водяной пар чуть ли не до самого полюса.
Если в криоэрах в каждом из полушарий существуют три атмосферные ячейки и единственная (термическая) океанская, то в термоэрах ситуация, похоже, была как бы зеркальной. В атмосфере существует единственная ячейка, в которой происходит прямой перенос тепла и влаги из приэкваториальных областей в приполярные; это хорошо объясняет упомянутый выше парадокс с располагающимся на экваторе аридным поясом.[44] В гидросфере, напротив, существуют две ячейки, причем в экваториальной ячейке циркуляция идет по галинному типу, а в высокоширотной — по термическому. В зоне соприкосновения гидросферных ячеек, где водные массы движутся навстречу друг другу, должны возникать апвеллинги;[45] подтверждением тому служит распространение по этой предполагаемой границе обогащенных органикой черносланцевых формаций, которые отлагаются в избыточно-продуктивных морских акваториях.
Данную ситуацию (ее, по аналогии с предыдущей, можно охарактеризовать как «атмосферный теплоперенос — холодные океаны — теплые материки») отличает высокая выровненность климата по всей планете: температурный градиент как между низкими и высокими широтами, так и между океанами и материками много слабее нынешнего. Климат на большей части Земли