Губки занимают совершенно обособленное положение в системе животного царства и могут быть противопоставлены всем остальным многоклеточным животным: есть веские основания считать, что они ведут свое происхождение от иной группы простейших, нежели прочие метазоа. Существует, например, остроумная и неплохо аргументированная гипотеза Й. Райтнера (1991), согласно которой губки возникают как симбиоз бактериальной колонии с хоанофлагеллятными простейшими. (Симбиотические микроорганизмы составляют до 80% объема тела современных губок.) Достигнутый губками уровень организации не позволяет назвать их многоклеточными в строгом смысле («многотканевыми» по Корлиссу), поэтому вроде бы нет ничего удивительного в том, что именно с этой примитивнейшей группы животных начинается фанерозойская летопись. Но это только на первый взгляд.
Рис. 24. Различные кембрийские животные: лобоподы (а–б); членистоногие неясного систематического положения (в–д); трилобиты (е–ж) (по Dzik, 1997): а — Xenusion; б — Aysheaia; в — Wiwaxia; г — Anomalacaris; д — Opabinia; е — Olenoides; ж — Ogygopsis Рис. 25. Археоциаты: а — Archaeocyathida; б — Capsulocyathida; в — Kazachstanicyathida; г — Archaeocyathida (по Журавлеву, 1979) Дело в том, что крайне низкий уровень клеточной интеграции оставляет губкам единственно возможную «профессию» — прикрепленный пассивный фильтратор органической взвеси. Все губки (в том числе археоциаты) представляют собой открытый сверху мешок, стенки которого пронизаны каналами; вода постоянно движется сквозь них во внутреннюю (парагастральную) полость, а оттуда наружу через верхнее отверстие (устье). Входящие в состав стенок каналов хоаноциты (воротничковые жгутиковые клетки) отфильтровывают содержащуюся в воде органику и бактерии. Вопрос для школьной олимпиады: какая сила заставляет воду двигаться сквозь каналы в неподвижной стенке? Ответ: та же самая, что создает печную тягу — разница давлений на высоте поддувала и на высоте конца трубы в соответствии с законом Бернулли.[24] Если водная среда, в которой находится губка, имеет ненулевую скорость, то слой движущейся воды над устьем создает «подсос». Известно: чем выше труба, тем лучше тяга. Соответственно, губка может прокачивать через себя воду только тогда, когда ее устье приподнято над субстратом. (Сходный механизм обеспечивает вентиляцию нор сусликов и иных грызунов. Тот из выходов, через который при рытье норы выбрасывали грунт, оказывается заключен в холмик-«кротовину» и несколько приподнимается над землей; в итоге внутри норы возникает устойчивый ток воздуха от «низкого» выхода к «высокому»). Подъем же устья над субстратом можно обеспечить лишь при наличии твердого опорного скелета — органического или минерального (у современных губок есть оба варианта). Отсутствие в предшествующих отложениях этих легко обнаруживаемых скелетных элементов — спикул — свидетельствует о том, что данная группа живых организмов действительно возникла лишь в начале кембрия (возможно, именно по схеме Райтнера — см. выше), т.е. когда уже несомненно существовали и настоящие многоклеточные животные.
Вся геологическая история археоциат (появление, расцвет — около 300 родов, упадок и вымирание) укладывается в крохотный по геологическим меркам интервал в 15–20 млн лет — случай совершенно уникальный. Уже во второй половине кембрия эта процветавшая в начале периода группа исчезает, «как с белых яблонь дым», и при этом на смену ей не приходит никто, т.е. конкурентное вытеснение здесь предположить трудно. Создается впечатление, что археоциаты эксплуатировали некий ресурс, который сперва был в изобилии, а затем стал резко дефицитным. Сопоставляя экологию археоциат (по аналогии с современными губками) и изложенную выше картину вендско-кембрийской биосферной перестройки, можно предположить следующее. Группа эта процветала в тот относительно краткий и принципиально неустойчивый период, когда развитие пеллетного транспорта уже обогатило придонные слои кислородом, но еще не сконцентрировало большую часть органики внутри осадка; этот расклад, как полагает А. Г. Пономаренко, должен быть весьма благоприятен для «тонких» фильтраторов. Для того чтобы эксплуатировать открывшийся ресурс, нет нужды в «квалифицированной рабочей силе» — вполне достаточно макроскопических организмов, даже не являющихся многотканевыми. Однако дальнейшее развитие ситуации с запасанием органики в осадке (что позволяет сделать ее переработку более равномерной и улучшить снабжение кислородом придонных слоев) резко ухудшает положение бактерий и пассивных фильтраторов, но зато благоприятствует илоедам. Время археоциат кончается. Наступает время трилобитов (рис. 24, е–ж).[25]
Давайте вернемся к графику, показывающему, как изменялось разнообразие фауны на протяжении фанерозоя (рис. 23). Обсуждаемые нами события знаменуют собой формирование новой биоты, которая сохраняет достаточное единство на протяжении всего палеозоя и большее разнообразие, чем прежняя, «кембрийская» — и в таксономическом, и в экологическом отношении. В современной экологии достаточно строго установлено, что смена эвтрофных условий на олиготрофные вызывает в экосистеме более «мелкую нарезку» экологических ниш и, следовательно, рост биологического разнообразия. Все это соответствует изложенным выше представлениям об «олиготрофизации» кембрийского океана за счет пеллетного транспорта.
В бентосе тем временем к обитателям раковин и жилых трубок добавляются существа с принципиально иными типами твердого скелета — внутренним (хордовые) и подвижным наружным (членистоногие). Интересно, что членистоногие (Arthropoda) появились позднее многих типов животного царства (во втором веке кембрия — атдабанском), однако сразу в составе практически всех своих подтипов и классов — и ракообразные, и хелицеровые, и вымершие трилобиты, и множество удивительных существ, точная систематическая принадлежность которых до сих пор неясна (рис. 24, в–д). Ситуация с кембрийскими членистоногими похожа на ту, что была с вендобионтами (см. главу 5): оказалось, что многие из них не могут быть отнесены к настоящим артроподам. Например, у аномалакариса (самого крупного животного того времени — 70 см) ротовые части состоят из четырех концентрически сходящихся лепестков, образующих нечто вроде зажимов цангового карандаша (рис. 24, г). Эти лепестки никоим образом не могут представлять собой видоизмененные конечности, что является одним из ключевых диагностических признаков типа членистоногих.
Вероятно, целый ряд неродственных между собой групп начинает в это время независимо приобретать отдельные признаки членистоногих, в результате чего они достигают артроподного уровня организации. Подробнее о процессах параллельной эволюции, подобных этой «артроподизации», мы поговорим позже (в главе 12). Пока же для нас существенно лишь само возникновение принципиально нового типа скелета, обладатели которого начинают играть ключевую роль в формирующихся экосистемах. Так, трилобиты становятся, по-видимому, основными потребителями того самого «упакованного» органического детрита, обогащающего донные осадки, и могут считаться настоящей эмблемой палеозоя.
К середине кембрия продуктивность и биологическое разнообразие достигают такого уровня, что у экосистем возникает нужда в «управляющем блоке» — верхних трофических уровнях, представленных специализированными хищниками-макрофагами. И вот начинается интереснейший процесс: борьба за этот «государственный военный заказ» между несколькими, самыми мощными, «корпорациями» — наиболее эволюционно продвинутыми группами животных. Из курса зоологии вам должно быть известно, что самыми высокоорганизованными среди первичноротых являются членистоногие и моллюски, а вершину эволюции вторичноротых представляют собой позвоночные. Именно эти группы и начинают соревнование за открывшуюся вакансию.
Первыми добились успеха членистоногие и близкие к ним артроподоподобные формы. Самым крупным хищником тех времен был аномалакарис; хищниками, как считают сейчас многие исследователи, были и самые первые трилобиты — лишь позднее эта группа перешла к детритофагии.[26] Однако вскоре вперед вырвались моллюски: появившиеся в конце кембрия головоногие (это были малоподвижные формы, родственные