(израсходованной на завтрак). Приняв два предположения — согласно первому бутерброд ничего не стоит, согласно второму бисквит выдается в виде бесплатного приложения к лимонаду и бутербродам (если бы хоть одно из этих предположений соответствовало действительности, в кондитерскую нельзя было бы пробиться!), — Бальбус получает, что завтрак Клары стоил 8 пенсов, а завтрак старушек — 19 пенсов независимо от принятой гипотезы. Отсюда в соответствии со своим правилом Бальбус заключил, что «обнаруженное совпадение доказывает правильность полученных результатов». Я опровергну правило Бальбуса, указав всего лишь один пример, в котором это правило нарушается. Для того чтобы опровергнуть любое утверждение, одного противоречащего примера вполне достаточно. Если воспользоваться специальной логической терминологией, то можно сказать, что для опровержения общеутвердительного суждения достаточно опровергнуть противоположное ему частноотрицательное суждение. (Здесь необходимо остановиться и совершить небольшой экскурс в логику вообще и в женскую логику в частности. Общеутвердительное суждение «Все говорят, что такой-то и такой-то — мокрая курица» мгновенно опровергается доказательством истинности частноотрицательного суждения «Питер говорит, что такой-то и такой-то — гусь лапчатый», эквивалентного суждению «Питер не говорит, что такой-то и такой-то — мокрая курица». Общеотрицательное суждение «Никто не бывает у нее» великолепно парируется частноутвердительным суждением «Я был у нее вчера». Короче говоря, любое из двух противоположных суждений опровергает другое. Отсюда мораль: поскольку доказать частное суждение гораздо легче, чем общее, в разговоре с дамой разумно ограничивать собственные высказывания частными суждениями, предоставляя своей собеседнице доказывать, если это в ее силах, общие суждения. Тем самым вы всегда сможете обеспечить себе логическую победу. Особенно рассчитывать на то, что вам практически удастся одержать верх над вашей собеседницей, не следует, поскольку она всегда может отступить, сделав обескураживающее заявление: «Это к делу не относится!» Ни одному мужчине еще не удавалось удовлетворительным образом парировать подобный ход. А теперь вернемся к Бальбусу.) Частноотрицательное суждение, на котором я хочу проверить его правило, можно сформулировать так. Предположим, что два счета за завтрак гласят: «2 булочки с изюмом, 1 пирожок, 2 сосиски и бутылка лимонада. Итого: 1 шиллинг 9 пенсов» и «1 булочка с изюмом, 2 пирожка, 1 сосиска и бутылка лимонада. Итого: 1 шиллинг 4 пенса». Предположим также, что Клара заказала себе на завтрак 3 булочки с изюмом, 1 пирожок, 1 сосиску и 2 бутылки лимонада, а две сестры-старушки довольствовались 8 булочками с изюмом, 4 пирожками, 2 сосисками и 6 бутылками лимонада (бедняжки, как им захотелось пить!). Если Бальбус любезно согласится испытать свое правило «двух разных предположений» на этом «суждении» и предположит сначала, что булочка с изюмом стоит 1 пенс, а пирожок 2 пенса, а затем — что булочка с изюмом и пирожок стоят по 3 пенса, то за первый счет ему придется «уплатить» 1 шиллинг 9 пенсов, а за второй — 4 шиллинга 10 пенсов независимо от предположения. Полное согласие результатов, скажет он, «доказывает их правильность». Между тем булочка с изюмом в действительности стоила 2 пенса, пирожок — 3 пенса, сосиска — 6 пенсов, а бутылка лимонада — 2 пенса. Поэтому третий завтрак обошелся Кларе в 1 шиллинг 7 пенсов, а ее умирающим от жажды приятельницам в 4 шиллинга 4 пенса!

Я хотел бы процитировать и кратко прокомментировать еще одно замечание Бальбуса, ибо, как мне кажется, некоторые читатели могли бы извлечь из него мораль. Вот что он пишет: «В сущности безразлично, будем ли мы при решении данной задачи пользоваться словами и называть это арифметикой или прибегнем к буквам и символам и назовем его алгеброй». Оба определения (и арифметики, и алгебры) мне представляются неверными. Арифметический метод решения задачи является чисто синтетическим: от одного известного факта он переходит к другому до тех пор, пока желанная цель не будет достигнута. Алгебраический же метод решения по своей природе аналитический: он начинает с конца и, обозначив цель поиска условным символом, устремляется к началу и влечет за собой свою жертву-инкогнито до тех пор, пока не выходит на ослепительный свет известных фактов, срывает с нее маску и говорит: «Я тебя знаю!»

Чтобы не быть голословным, приведу пример. Представьте себе, что к вам в дом забрался грабитель и, похитив какие-то вещи, скрылся. Вы зовете на помощь дежурного полисмена. Отчет о дальнейших событиях в устах полисмена мог бы звучать, например, так:

— Да, мэм, я видел, как какой-то верзила перелез через забор вашего сада, но от меня это было далековато и сразу схватить его я не мог. А что, думаю, если я побегу ему наперерез? И точно, только я выбежал на соседнюю улицу, гляжу — из-за угла на всех парах катит Билл Сайкс собственной персоной. Я его цап за воротник:

— Ага, голубчик, попался! Тебя-то мне и надо!

Больше я ему ничего не сказал. А он мне в ответ:

— Ладно, — говорит, — фараон, твоя взяла. Веди в участок, ничего не попишешь!

Так действовал бы арифметический полисмен. А вот другой отчет о тех же событиях:

— Вижу, кто-то бежит. Что делать? Пуститься за ним вслед? Не имеет смысла: больно далеко он ушел, все равно не догонишь. Вот я и решил осмотреть сад. Гляжу — на клумбе, где этот парень помял все ваши цветы, следы остались: такие, знаете, ясные, четкие отпечатки его ножищ. Пригляделся повнимательней — так и есть: левый каблук везде отпечатался глубже, чем правый. Тут я говорю себе: «Парень, что их оставил, должно быть, высокого роста и хром на левую ногу». Провел я рукой по стене в том месте, где он перелез, и вижу: на руке сажа. Я и подумал: «Где я мог видеть здоровенного парня, трубочиста, да к тому же хромого на левую ногу?» И тут меня как громом ударило: «Да ведь это же Билл Сайкс!»

Так действовал бы алгебраический полисмен — на мой взгляд, более интеллектуальный тип полисмена, чем первый.

Узелок VIII

Задача 1.

Расположить 24 поросенка в четырех свинарниках так, чтобы при обходе свинарников по кругу число поросят в очередном свинарнике неизменно оказывалось ближе к 10, чем число поросят в предыдущем свинарнике.

Ответ.

В первом свинарнике должно находится 8 поросят, во втором — 10 и в четвертом — 6. Ничего не должно находиться в третьем свинарнике: он должен быть пуст. Совершаем контрольный обход свинарников. Десять ближе к 10, чем 8. Что может быть ближе к 10, чем 10? Ничто! Но именно «ничто» и находится в третьем свинарнике. Шесть ближе к 10, чем 0 (арифметический псевдоним «ничего»), 8 ближе к 10, чем 6. Условия задачи выполнены.

Задача 2.

Из некоторого пункта в обе стороны каждые 15 минут отправляются омнибусы. Пешеход выходит из того же пункта в момент отправления омнибусов и встречает первый омнибус через 12 1/2 минуты. Когда пешехода нагонит первый омнибус?

Ответ.

Через 6 1/4 минуты после встречи с первым омнибусом.

Решение.

Пусть a — расстояние, проходимое омнибусом за 15 минут, а x — расстояние от пункта отправления до того места, где омнибус нагонит пешехода. Поскольку встреченный пешеходом омнибус прибывает в пункт отправления через 2 1/2 минуты после встречи, он за эти 2 1/2 минуты проезжает расстояние, на преодоление которого у пешехода ушло 12 1/2 минуты. Следовательно, скорость омнибуса в 5 раз превышает скорость пешехода. Омнибус, который нагонит пешехода в тот момент, когда пешеход пускается в путь, находится на расстоянии а от пункта отправления. Следовательно, к тому моменту, когда путешественник проходит расстояние x,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату