В день отправления письма братья впервые решили прогуляться близ Английского банка, в подвалах которого хранилась указанная сумма.
На эту задачу было получено два в высшей степени замечательных ответа. Читатель, у которого
Лоло (Л) успевает связать 5 шарфов за то время, пока Мими (М) вяжет 2. Зузу (З) успевает связать 4 шарфа за то время, пока Лоло вяжет 3. Пять шарфов Зузу весят столько же, сколько один шарф Лоло. Пять шарфов Мими весят столько же, сколько 3 шарфа Зузу. Один шарф Мими греет так же, как 4 шарфа Зузу а один шарф Лоло — как 3 шарфа Мими. Какая из трех вязальщиц лучше, если быстроту вязки, легкость шарфа и его способность сохранять тепло оценивать одинаково?
Места на конкурсе вязальщиц шарфов распределились следующим образом: 1) М, 2) Л, 3) З.
При прочих равных условиях Л превосходит М по быстроте вязки в 5/2 раза, а З превосходит Л в 4/3 раза. Чтобы найти 3 числа, удовлетворяющих этим условиям, проще всего принять скорость, с которой вяжет Л (ибо Л непосредственно связана и с М, и с З), за 1, а скорость, с которой вяжут ее конкурентки, выразить в виде дробей. В этих единицах качество работы Л, М и З оценивается числами 1, 2/3 и 4/3.
Для оценки
Почему оценки претенденток надлежит именно перемножать, а не складывать, подробно объясняется, во многих учебниках, и я не буду занимать здесь место повторением избитых истин. Однако
Некоторые письма, полученные в связи с узелком VI, навели меня на мысль о желательности дополнительных объяснений.
Первая задача, разумеется, не более чем шутка, основанная на игре слов. Я считал, что подобная вольность вполне допустима в серии задач, призванной не столько поучать, сколько развлекать. Однако двое моих корреспондентов, полагающих, что Аполлон должен всегда быть начеку и не ослаблять тетивы своего разящего лука, обрушились на задачку о 60 000 фунтов стерлингов с уничтожающей критикой. Кстати сказать, ни один из них не смог решить задачу, но такова уж человеческая натура.
Как-то раз (для желающих я могу назвать точную дату: 31 сентября) я встретил своего старого друга Брауна и загадал ему только что услышанную загадку. Мощным усилием своего колоссального интеллекта Браун разгадал ее. «Правильно!» — сказал я, услышав ответ. «Очень хорошая загадка, — похвалил меня Браун, — не всякий ее разгадает. Нет, что и говорить, загадка — просто прелесть!» Не успел я распрощаться с Брауном, как через несколько шагов налетел на Смита и задал ему ту же загадку. Тот на минуту наморщил лоб, а потом махнул рукой. Дрожащим голосом я робко пролепетал ответ. «Дурацкая загадка, сэр! — недовольно проворчал Смит на прощание. — Глупее не придумаешь! Удивляюсь, как вы решаетесь повторять подобную чепуху!» Тем не менее есть все основания считать, что Смит по уму не только не уступает Брауну, но и, быть может, даже превосходит его!
Вторая задача представляет собой пример на обычное тройное правило. Сущность его сводится к следующему. Результат зависит от нескольких изменяющихся параметров, которые связаны между собой так, что если бы все параметры, кроме одного, имели постоянные значения, то результат изменялся бы пропорционально параметру, оставшемуся свободным; поскольку варьируются все параметры, то результат изменяется пропорционально их произведению. Так, например, объем ямы, имеющей форму прямоугольного параллелепипеда при постоянной длине и ширине, изменяется пропорционально глубине ямы, а при переменной длине, ширине и глубине — пропорционально произведению всех трех измерений.
При иной связи результата с исходными данными тройное правило перестает действовать и задача нередко становится чрезвычайно сложной.
Приведем несколько примеров. Предположим, что на конкурсном экзамене по французскому, немецкому и итальянскому языку за право получать некую стипендию борются два кандидата: А и В.