Два путешественника садятся на поезда, идущие в противоположных направлениях по одному и тому же замкнутому маршруту и отправляющиеся в одно и то же время. Поезда отходят от станции отправления каждые 15 минут в обоих направлениях. Поезд, идущий на восток, возвращается через 3 часа, поезд, идущий на запад, — через 2. Сколько поездов встретит каждый из путешественников в пути (поезда, которые отбывают со станции отправления и прибывают на нее одновременно с поездом, которым следует путешественник, встречными не считаются)?
Путешественники следуют по тому же маршруту, что и раньше, но начинают считать встречные поезда лишь с момента встречи их поездов. Сколько поездов встретится каждому путешественнику?
1)19 поездов. 2) Путешественник, следующий восточным поездом, встретит 12 поездов, его напарник — 8.
С момента отправления до возвращения в исходный пункт у одних поездов проходит 180 минут, у других — 120. Возьмем наименьшее общее кратное 180 и 120 (оно равно 360) и разделим весь маршрут на 360 частей (будем называть каждую часть просто единицей). Тогда поезда, идущие в одном направлении, будут следовать со скоростью 2 единицы в минуту, а интервал между ними будет составлять 30 единиц. Поезда, идущие в другом направлении, будут следовать со скоростью 3 единицы в минуту, а интервал между ними будет равен 45 единицам. Восточный поезд проходит 2/5 этого расстояния, встречный — остальные 3/5, после чего они встречаются в 18 единицах от станции отправления. Все последующие поезда восточный поезд встречает на расстоянии 18 единиц от места предыдущей встречи. В момент отправления западного поезда первый встречный поезд находится от него на расстоянии 30 единиц. Западный поезд проходит 3/5 этого расстояния, встречный — остальные 2/5, после чего они встречаются на расстоянии 18 единиц от станции отправления. Каждая последующая встреча западного поезда с восточными происходит на расстоянии 18 единиц от места предыдущей встречи. Следовательно, если вдоль всего замкнутого маршрута мы расставим 19 столбов, разделив его тем самым на 20 частей по 18 единиц в каждой, то поезда будут встречаться у каждого столба. При этом в первом случае (задача 1) каждый путешественник, вернувшись на станцию отправления, проедет мимо 19 столбов, а значит, встретит 19 поездов. Во втором случае (задача 2) путешественник, едущий на восток, начинает считать поезда лишь после того, как он проедет 2/5 всего пути, то есть доедет до восьмого столба, и таким образом успевает сосчитать лишь 12 столбов (или, что то же самое, поездов). Его конкурент сосчитает лишь 8. Встреча их поездов происходит в конце 2/5 от 3 часов, или 3/5 от 2 часов, то есть спустя 72 минуты после отправления.
Узелок IV
Имеются 5 мешков. Первый и пятый мешки вместе весят 12 фунтов, второй и третий — 13 1/2 фунта, третий и четвертый — 11 1/2 фунта, четвертый и пятый — 8 фунтов, первый, третий и пятый — 16 фунтов. Требуется узнать, сколько весит каждый мешок.
5 1/2, 6 1/2, 7, 4 1/2 и 3 1/2 фунта.
Сумма результатов всех пяти взвешиваний равна 61 фунту, при этом вес третьего мешка входит в 61 фунт
Задача об определении веса мешков, как ясно с первого взгляда любому алгебраисту, сводится к решению системы линейных уравнений. Однако она без труда решается и с помощью одной лишь арифметики, и поэтому использование более сложных методов я считаю дурным тоном.
Узелок V
Требуется поставить 3 крестика двум или трем картинам, 2 крестика четырем или пяти картинам и один крестик — девяти или десяти картинам, отмечая одновременно тремя ноликами 1 или 2 картины, двумя ноликами 3 или 4 картины и одним ноликом 8 или 9 картин так, чтобы число картин, получивших оценки, было наименьшим из возможных, а отмеченные картины получили как можно большее число оценок.
10 картин получают 29 оценок, распределенных следующим образом:
Расставив все крестики и заключив в скобки те из них, которые по условиям задачи необязательны, мы получим 10 картин, оценки которых распределены так:
Расставив все нули, но не от начала к концу, как крестики, а в обратном направлении — от конца к началу, мы получим 9 картин с оценками, распределенными так:
Единственное, что еще необходимо сделать после этого, — вдвинуть оба клина как можно плотнее друг в друга, чтобы число отмеченных картин было минимальным. Если та или иная необязательная оценка мешает нам загонять клин в клин, мы ее стираем, если же не мешает — оставляем в целости и сохранности. В первом и третьем рядах оказывается по 10 обязательных оценок, а в середине — лишь 7. Следовательно, необходимо стереть все необязательные оценки в первом и третьем рядах обоих клиньев и оставить все необязательные оценки, стоящие в середине.
Узелок VI
В начале года у каждого из братьев А и В было по 1000 фунтов стерлингов. Через год братья в своем письме губернатору Кговджни уведомляют его, что в день отправления письма они, как никогда, близки к 60 000 фунтов стерлингов. Каким образом им это удалось?