конденсатор, внезапность разрядов практически неограниченна и можно получить любую длину искры или потенциал. Так, например, применяя этот принцип особым способом, мне удалось создать громадное электрическое напряжение, максимальное значение которого теоретически могло быть выражено только миллионами вольт, что вызвало проливной дождь или постоянный поток толстых, грохочущих искр, которые вырывались в пространство на расстояние восьми или девяти футов от изолированного провода, и эти искры иногда вели себя как настоящие молнии, и для тех немногих, кто стал свидетелем этих событий в моей лаборатории за последние два или три года, они явились незабываемым зрелищем. Длину этих искр и потенциал нетрудно увеличить в более объемном помещении или на открытом воздухе во много раз путем применения соответствующих средств и методов.
Хотя в таких осцилляторах высокая степень внезапности изменения величины тока в основном зависит от электрических констант цепи, некоторые менее значительные, но практически важные показатели могут быть обеспечены путем правильной конструкции устройств, применяемых по необходимости, но совсем не обязательных, когда дополнительное оборудование замыкает и размыкает цепь. Разумеется, я посвятил много времени их изучению и совершенствованию, и, что касается контуров, показанных на рисунках 1, 3, 4 и 5, я много писал о них в своих ранних трудах, равно как и работе прерывателей в вакууме, воздухе и жидкостях под различным давлением.
Уже давно известно, еще со времен, когда проводил свои исследования Поггендорф, что, когда вибропреобразователь или прерыватель катушки индуктивности заключены в сосуд, откуда откачан воздух, прерывание тока происходит более эффективно, так как вакуум ведет себя подобно конденсатору, обволакивающему прерыватель. Мои опыты с несколькими типами таких устройств привели меня к пониманию того, что вакуум — это не точная копия конденсатора, но скорее абсорбент, причем усиление скорости прерывания объясняется быстрым отводом улетучившегося вещества, которое образует дугу, а следовательно, зависит от скорости такого отвода и количества вещества. Так, при использовании твердых платиново-иридиевых контактов и небольшой силы тока разница невелика, но применяя мягкую платину и большую силу тока влияние вакуума очень заметно, в то время как ртуть или легко испаряемые контакты дают огромную разницу. Размеры вакуумного сосуда тоже важны: чем больше сосуд, тем больше скорость прерывания. Взглянув на исследования Поггендорфа в таком свете, я ясно понял, что можно добиться лишь небольшой скорости частиц, составляющих дугу, поскольку эффективное давление — по крайней мере при низкочастотных импульсах, зависящих от механических средств и токов ограниченной силы, которые можно пропускать через контакты, не боясь быстро их разрушить, — обязательно составляет небольшую долю обычного атмосферного, а оно, к тому же, сильно снижается вследствие взаимного притяжения параллельных составляющих тока в дуге. Рассуждения в том же направлении привели меня к мысли, что если бы удалось механически нагнетать в зазор изолирующую жидкость со скоростью, достаточной, чтобы частицы, формирующие дугу, уносились быстрее, чем это происходит в вакуумной среде, внезапность разрядов усилилась бы. Этот вывод был подтвержден моими опытами, которые показали, что жидкий изолятор, такой как масло или спирт, пропускаемый через искровой промежуток даже с умеренной скоростью, позволял значительно повысить скорость изменения первичного тока и уменьшить длину провода во вторичной обмотке до 25 процентов от обычной длины. Длину провода вторичной обмотки удалось еще сократить путем нагнетания жидкости под высоким давлением. Что же касается внезапного броска тока, следующего за замыканием контактов, то применение диэлектрика или пленки, более прочной, чем воздух при обычном давлении, хотя и дает видимый эффект, не имеет большого значения, когда прерыватель во время работы разрывает дугу, так как эдс батареи или муниципальной электросети крайне недостаточно для того, чтобы пробить изолирующую пленку даже толщиной в одну тысячную дюйма.
Постоянные усилия, направленные на усовершенствование разнообразных автоматических приспособлений для контроля тока питания, четко выявили ограниченность таковых вследствие их механики, и идея использования конденсаторов, как средства получения, независимо от таких механических устройств, внезапных изменений параметров тока, которые необходимы в прикладных областях, является удачным и своевременным решением. В таком новом для всех процессе механические средства выполняют лишь незначительную функцию, а именно: периодически заставляют колебаться электромагнитную систему, и они должны лишь удовлетворять требованиям надежности в работе и долговечности (этим могут заняться механики), которых, в определенной степени, мне нетрудно было добиться во многих устройствах.
Итак, памятуя о том, что скорость изменения разряда или первичного тока в таких приборах в основном зависит от физических констант контура, через который происходит разряд, становится очевидным, что необходимо правильно сконструировать такой контур, и во время опытов, которые я проводил с этой целью, мною были сделаны небезынтересные наблюдения.
Во-первых, можно сделать очевидное заключение: поскольку первичная обмотка в таком трансформаторе обычно состоит из нескольких витков медной ленты с сопротивлением, которым можно пренебречь, то и изоляция между витками не требует особого внимания. Но практический опыт вскоре убеждает нас в нашей ошибке, ибо часто случается так, что вследствие огромного резонансного подъема, разность потенциалов на соседних витках достигает такого значения, что происходит пробой даже при использовании очень хорошей обычной изоляции. По этой причине я счел необходимым поступить с первичной обмоткой таким же образом, как было описано выше, добившись твердости, которая получается в результате вытягивания металлических пластин и уплотнения изолирующих слоев во время нагревания в вакууме и последующего сжатия металла во время охлаждения до нормальной температуры после того, как диэлектрик затвердел.
Затем экспериментатор будет удивлен, обнаружив важность правильного выбора длины первичной обмотки и способа ее соединения. Он, естественно, готов увидеть, что, поскольку разрядный контур невелик, включение в этот контур небольшой индуктивности или фрикционного сопротивления даст ощутимую разницу в результате, например, в длине искры на вторичной обмотке. Но он, конечно, не ожидает того, что иногда даже четверти дюйма провода достаточно для получения зримого эффекта. В качестве примера: несложно при помощи такого аппарата получить искру длиной несколько футов, а удалив или добавив к первичной обмотке дюйм толстого медного провода, можно сократить искру наполовину. Наблюдения такого рода впечатляют экспериментатора необходимостью точной настройки контуров и определения их констант. Его внимание, помимо его воли, привлекается тогда к преимуществам, которые можно получить от снижения самоиндукции и сопротивления разрядной цепи, причем первое обеспечивает наибольшую частоту вибраций, и второе — экономию. Он также начинает понимать важность сведения к минимуму длины и сопротивления всех соединительных частей и проводов. Хорошо сконструированный прибор и его разрядный контур должны иметь не более пяти процентов неактивного проводника, его сопротивление должно быть крайне малым, а самоиндукция не должна составлять более нескольких сот сантиметров. Я обнаружил, что практически обязательно для постройки первичной обмотки надо применять тонкую медную ленту, и именно ее использование позволило сделать некоторые любопытные наблюдения. Выяснилось, что при определенных условиях в процессе работы первичная обмотка становится ощутимо прохладнее. Довольно длительное время я сомневался в таком результате, пока не доказал положительно, что это происходит вследствие эффекта Томсона, когда тепло от первичной обмотки передается на пластины конденсатора.
Поначалу может показаться неясным, почему первичный разрядный контур так чувствителен к изменениям длины, ибо цепь любой длины может быть подключена к конденсатору, и если соотношение между сопротивлением, емкостью и самоиндукцией удовлетворяет условиям, определенным лордом Кельвином, произойдет колебательный разряд. Но следует помнить, что скорость распространения возмущения в контуре зависит от этих величин, и наилучшего результата можно достичь, когда скорость такова, что формируется стоячая волна с одной точкой пересечения, расположенной почти всегда в точке контура или проводника, равноудаленной от пластин конденсатора. При таком условии достигается максимальное напряжение на выводах конденсатора. Но такое состояние возможно только тогда, когда скорость распространения по контуру такова, что возмущение проходит с интервалом, необходимым для завершения половины колебания. Итак, поскольку скорость крайне высока, а длина контура очень мала, даже незначительные изменения длины могут привести к поразительным изменениям в работе устройства. Эти утверждения, конечно, не следует воспринимать как обязательные для каждого случая, такие события имеют место только в случаях, когда колебание разрядного контура, начатое колебанием контроллера, не затухает до начала следующего колебания контроллера. Это можно наглядно проиллюстрировать на