над основными трудностями, и теперь ничто серьезное не стоит на пути получения электрических колебаний в несколько миллионов раз в секунду от обычных источников, используя простые и довольно дешевые приспособления. О том, что это означает, распространяться и не нужно. Это будет по достоинству оценено теми, кто следил за развитием событий в этой и смежных областях знаний. Машины, которые вы видите перед собой, лишь несколько образцов из тех, что я разработал, и их предназначение — заменить обычную катушку индуктивности во многих сферах ее применения.
Что касается общего принципа, лежащего в основе этих преобразователей, или, выражаясь более точно, электрических осцилляторов, то он довольно прост, и был выдвинут мною пять или шесть лет назад. Конденсатор заряжается от любого доступного источника, а затем любым удобным способом разряжается через цепь, содержащую, как в данном случае, первичную обмотку трансформатора. На рисунке 1 показаны генератор G, конденсатор С, а для зарядки и разрядки последнего предусмотрен прибор Ь, работающий так, чтобы создавать постоянное прерывание в диэлектрике. Если контур L, который содержит высоко- или низковольтный прибор, через который разряжается конденсатор, правильно настроен, то возникают крайне быстрые электрические вибрации, какие, насколько мы знаем, невозможно получить иным способом; эти колебания, в свою очередь, индуцируют в соседней цепи подобные же колебания, дающие любопытные эффекты. Познакомившись с ними уже тогда, когда законы, управляющие этими явлениями, еще не были до конца изучены, я сохранил в памяти некоторые понятия, сформированные в то время, которые, несмотря на примитивизм, сохраняют актуальность в свете наших расширившихся познаний. Я связал конденсатор с резервуаром R, в который при помощи насоса Р подается несжимаемая жидкость W, подобная воде, через трубу р, как показано на рисунке 2, где жидкость представляет собой электричество, насос — это генератор, а труба — это соединительный провод. Резервуар имеет подвижное дно В, которое удерживается в верхнем положении пружиной S' и открывает шлюзы оо, когда уровень жидкости достиг определенной отметки и ее давления достаточно для того, чтобы преодолеть сопротивление пружины. Дополняют модель переменный груз ш, винт 5, меняющий сопротивление пружины, и клапан v, служащий для регулирования потока жидкости. Когда дно поддается, жидкость в резервуаре начинает двигаться с некоей скоростью, приобретая механический момент, что приводит к возрастанию давления на дно и оно движется выше, вследствие чего в сосуд поступает жидкости больше, чем может пропустить подающая труба, и пружина занимает свое прежнее положение, вновь закрывая шлюзы, после чего процесс повторяется вновь с более или менее быстрой последовательностью. Это движение дна вверх и вниз можно сравнить с прерыванием и восстановлением прово-Рис. 1 дящего контура, фрикционное сопротивление механической системы — с омическим сопротивлением, и, очевидно, инерцию движущихся предметов — с самоиндукцией электрической цепи. Теперь становится очевидным: для того, чтобы поддерживать движение системы без использования дополнительных устройств, средняя скорость подачи через трубу должна быть меньше средней скорости отдачи из сосуда, ибо, если будет наоборот, то шлюзы так и останутся открытыми и колебания прекратятся. Чем более скорость подачи приближается к скорости опорожнения, тем быстрее колебания дна; и если мы поразмышляем над простыми механическими принципами, то нам тем более станет ясно, что если подача воды идет настолько же быстро, насколько дно колеблется само по себе, то и амплитуда колебаний будет наивысшей, давление на дно будет наивысшим, и наибольшее количество воды будет вытекать через шлюзы. Все эти соображения верны и для электрической цепи, и во время опытов с высокочастотными устройствами, в которых эти эффекты были намеренно усилены для удобства наблюдения, и я понял, что указанное условие выполнимо, когда емкость, индуктивность и частота колебаний находятся в определенном соотношении, и данное наблюдение я применил во время настройки индуктивных контуров. Вы заметите, что это условие, определяющее соотношение скорости заряда и разряда, очень важное в практическом отношении, в особенности тогда, когда не применяется никаких приборов, воздействующих на пробой диэлектрика, является вполне самостоятельным правилом и его не следует путать с правилом, определяющим колебательный характер разряда, над которым давным-давно работал лорд Кельвин.
Чтобы сделать следующий шаг в развитии этого принципа и его практическом применении надо было связать его с системой, показанной на рисунке 3, катушкой самоиндукции L, как указано на диаграмме, которая изменяет действие системы теперь уже понятными способами. В упрощенной форме от конденсатора, как прерывающей части контура, отказались, а необходимая емкость придана самой катушке, для чего витки были намотаны так, как показано на рисунке 4, чтобы накопить надлежащее и наибольшее количество энергии. Тогда я связал вторичную обмотку S' с первичным контуром Р, как показано на рисунке 5, и это дало возможность получить любое необходимое напряжение. После этого была использована схема, показанная на рисунке 6, как наиболее удобная для муниципальных электрических цепей. И вновь не требующий объяснения рисунок 7 иллюстрирует типичную конструкцию машин с двумя и более контурами. Видоизмененная версия такой схемы с одним непрерывным контактом, общим для двух контуров и особыми прерывателями для каждого из них, позволяет легко настраивать фазы токов в первичной обмотке, что дает практическое преимущество таким устройствам. И наконец рисунок 8 показывает точное расположение частей и контуров одного из небольших осцилляторов, имеющих прерыватель, подобный тем, что применяются с индукционными катушками. И хотя большинство из показанных схем я объяснял ранее, мне показалось необходимым остановиться на них еще раз сегодня, чтобы представить предмет беседы ясно и со всех сторон.
Особо ценный результат от работы рентгеновских трубок можно получить, используя два контура, соединенных, как показано на рисунок 7, либо иным образом, а также при помощи независимых контуров с двумя первичными обмотками. А именно: в обычных бытовых лампах вакуум усиливается, когда ток через первичную обмотку течет в определенном направлении и уменьшается, когда направление тока меняется. Это прямое следствие различных условий, которые, как правило, имеют место во время эксплуатации обычных устройств; то есть, ассиметричность разнонаправленных импульсов тока, неодинаковые габариты, конфигурация или температура обоих электродов, либо подобные причины, которые имеют тенденцию делать неравномерным рассеивание энергии с электродов. Следует, однако, заметить, что до определенного момента, когда электроды начинают действовать совершенно независимо, вакуум продолжает нарастать независимо от того, в каком направлении течет ток через первичную обмотку. На схеме, показанной на рисунке 7 или ее вариантах, о которых говорилось, основной источник проблем отсутствует, поскольку направление тока через первичную обмотку постоянно автоматически меняется и, таким образом, трубка, из которой первоначально воздух был откачан, может работать долгое время без возрастания вакуума и не теряя своей эффективности.
Фотоснимок одного из таких устройств в сборе, специально приспособленного для работы с рентгеновскими лампами, или как лабораторный аппарат вместо обычной индукционной катушки (рисунок 9) дает представление о расположении его частей. Конденсатор С (рисунок 8) помещен в короб В, в передней части которого вверху располагается мотор для управления цепями, в данном случае это простая обмотка L, приводящая в движение пружину 5, установленную сверху на обмотке.
Эта обмотка, обозначенная КЯК 33. рядная, в то же время служит для увеличения напряжения до величины, необходимой для заряда конденсатора. Это очень важное практическое преимущество, так как оно позволяет понизить емкость последнего до такой величины, чтобы она равнялась лишь нескольким процентам от мощности, требуемой для преобразования энергии в иных случаях. Кроме того, чем меньше емкость, тем быстрее колебания, и тем короче должна быть вторичная обмотка высокого напряжения. Разрядная цепь Р, расположенная вокруг вторичной обмотки S', сформирована из нескольких витков медной ленты и помещается сверху короба за зарядной