Второе свойство, отличное от других нейронных сетей, это то, что самоассоциативная память может быть спроектирована для хранения последовательностей паттернов, или временных паттернов. Это свойство достигается добавлением временных задержек к обратным связям. С такими задержками вы можете подать на автоассоциативную память последовательность паттернов, похожих на мелодию, и она может вспомнить всю последовательность. Я мог бы подать несколько первых нот «В лесу родилась елочка» и память вернула бы песню целиком. Когда подставляется часть последовательности, память может вспомнить оставшуюся часть. Как мы увидим далее, люди обучаются практически любым вещам, как последовательностям паттернов. Я предполагаю, что мозг использует контуры, аналогично тому, как это делает автоассоциативная память.
Автоассоциативные воспоминания указывают на потенциальную важность обратных связей для входных данных, изменяющихся во времени. Но подавляющее большинство ученых в области ИИ, нейронных сетей, и познания игнорируют время и обратные связи.
Ученые в области нейронаук в целом не улучшили ситуацию. Они также осведомлены об обратных связях — они были теми, кто их открыл — но у большинства из них нет теории (не дальше неопределенных разговоров о «фазах» и «модуляциях»), объясняющей, для чего они нужны мозгу в таком большом количестве. А время занимает небольшую или не центральную роль в большинстве их идей о функционировании мозга в целом. Они намерены отобразить мозг в терминах того, где происходят вещи, но не когда или как паттерны возбуждения взаимодействуют во времени. Частично это предубеждение исходит из ограниченности нашей экспериментальной аппаратуры. Одна из предпочитаемых технологий декады 90-х, известной как Декада Мозга, это функциональное отображение. Аппараты функционального отображения могут получать картины мозговой активности человека. Однако они не способны отслеживать быстрые изменения. Исследователь просит испытуемого сконцентрироваться на одной задаче снова и снова, так же как если бы фотограф просил его оставаться неподвижными, только это ментальный фотограф. Результатом является множество данных о том,
Я не хочу намекать, что все игнорировали время и обратные связи. Это настолько большое поле деятельности, что виртуально у каждой идеи есть свои приверженцы. В последние годы вера в важность обратных связей, времени и предсказания последовательностей находится на подъеме. Но грохот ИИ и классических нейронных сетей заглушил другие подходы и недооцененными на многие годы.
Несложно понять, почему люди — дилетанты и специалисты — считали, что интеллект определяется поведением. Несколько сотен лет люди соотносили способности мозга с часовым механизмом, с насосами и трубами, затем с паровой машиной и, в последнее время, с компьютером. Десятилетия научной фантастики плавали в идеях ИИ, от трех законов робототехники Айзека Азимова до C3PO из Звездных Войн. Идея интеллектуальных машин укоренилась в нашем воображении. Все машины, сделанные людьми или воображаемые, предназначены для того, чтоб что-то делать. У нас нет машин, которые думают, у нас есть машины, которые делают. Даже когда мы наблюдаем за людьми, мы фокусируемся на их поведении, а не на их скрытых мыслях. Следовательно, интуитивно кажется очевидным, что интеллектуальное поведение должно быть метрикой интеллектуальной системы.
Однако, смотря на историю науки, мы увидим, что наша интуиция часто является громадным препятствием на пути к истине. Система научных взглядов трудна для понимания, не потому что она сложная, а потому что интуитивные но некорректные предположения удерживают нас от того, чтоб увидеть правильный ответ. Астрономы до Коперника (1472–1543) ошибочно предполагали, что земля покоится в центре вселенной, потому что она ощущается, как неподвижная и кажется, что является центром вселенной. Было интуитивно очевидным, что все звезды являются частью гигантской вращающейся сферы, а мы находимся в ее центре. Чтобы предположить, что Земля вращается, что ее поверхность движется со скоростью около тысячи миль в час, и что Земля несется сквозь пространство — не говоря уж о том, что звезды удалены на триллионы миль — вы должны представить себя в качестве лунатика. Но это обернулось корректной системой взглядов. Простой для понимания, но интуитивно некорректной.
До Дарвина (1809–1882), казалось очевидным, что все виды животных неизменны в их форме. Крокодил не скрещивается с колибри; они различны и несовместимы. Идея о эволюции видов пришла в противоречие не только с религиозными учениями, но и со здравым смыслом. Эволюция предполагает, что у нас один общий предок со всеми живыми организмами на этой планете, включая червей и домашние растения на вашей кухне. Сейчас мы знаем, что это правда, но интуиция говорит обратное.
Я упомянул эти известные примеры, потому что я уверен, что поиски интеллектуальных машин были обременены интуитивными предположениями, которые препятствуют нашему прогрессу. Когда вы спросите себя, «Чем занимается интеллектуальная система?», интуитивно очевидно размышлять в терминах поведения. Мы демонстрируем человеческий интеллект посредством речи, письменности, действий, верно? Да, но только с одной точки зрения. Интеллект — это что-то, что происходит в вашей голове. Поведение — это только дополнительный ингредиент. Это не является интуитивно очевидным, но не сложно для понимания.
Весной 1986 года, как только я сел за мой стол после целого дня чтения научной литературы, написания истории интеллекта, и рассмотрения эволюции ИИ и нейронных сетей, я оказался за обдумыванием деталей. Был нескончаемый поток вещей, которые надо было изучить и прочитать, но я не достиг какого либо прояснения в понимании того, как действительно мозг работает в целом, или даже что он делает. Так было потому, что область нейронаук погрязла в деталях. И это до сих пор так. Каждый год публикуются тысячи исследовательских отчетов, но они тяготеют к добавлению новых данных в кучу, вместо того, чтоб организовать их. До сих пор нет общей теории, нет системы взглядов, объясняющей, что ваш мозг делает и как он это делает.
Я начал воображать, на что должно быть похоже решение этой проблемы. Должно ли оно быть крайне сложным из-за сложности мозга? Должно ли оно занять сотни страниц сплошной математики для того, чтобы описать работу мозга? Должны ли мы отобразить сотни или тысячи отдельных контуров, прежде чем мы сможем понять что-то полезное? Я так не думаю. История показывает, что лучшие решения научных проблем просты и элегантны. Тогда как детали забываются и дорога к конечной теории может быть трудной, конечная концептуальная модель в общем проста.
Без глубинного объяснения того, в каком направлении вести исследования, ученым в области нейронаук не следует больше продолжать пытаться объединить все имеющиеся детали в согласованную картину. Мозг невероятно сложный, обширный и устрашающий клубок нервных клеток. На первый взгляд он похож на стадион, полный приготовленных спагетти. Так же его можно описать, как кошмар электрика. Но при более близком и аккуратном рассмотрении мы увидим, что мозг — не беспорядочная куча. В нем много структурной организации — но слишком много для того, чтоб можно было надеяться постичь интуитивно его работу как целого, точно также мы могли бы увидеть, как осколки разбитой вазы собираются обратно вместе. Наша неудача не от недостатка данных или даже правильной части данных; все что нам нужно — это смена перспективы. С правильной моделью детали станут значимыми и управляемыми. Рассмотрим следующую причудливую аналогию, чтоб ухватить суть того, что я имею в виду.
Вообразите, что тысячелетия спустя человечество пришло к своему закату, и исследователи из удаленных внеземных цивилизаций приземляются на Землю. Они хотят понять, как мы жили. В особенности они озадачены сетью наших дорог. Для чего эти причудливые искусные структуры? Они начинают классифицировать все, и со спутников и с земли. Они дотошные археологи. Они записывают расположение каждого случайного фрагмента асфальта, каждый дорожный указатель, который опрокинулся и был унесен под откос эрозией, любую деталь, которую им удается найти. Они замечают, что некоторые дорожные сети отличаются от других; в некоторых местах они ветреные, узкие и в основном случайно ориентированные, в других — в виде красивой периодической сетки, в некоторых участках они становятся плотными и идут на сотни миль через пустыню. Они собирают горы деталей, но эти детали ничего не значат для них. Они продолжают собирать еще больше деталей в надежде найти какие-то новые данные, которые объяснят все. Они остаются в тупике надолго.
Это только до тех пор, пока они не скажет, «Эврика! Мне кажется, я вижу… эти создания не могли телепортировать сами себя, как можем мы. Они вынуждены были путешествовать с места на место, возможно на мобильных платформах хитрой конструкции». С этой точки зрения многие детали становятся на свои места. Маленькие извилистые сети улиц остались с ранних времен, когда средства передвижения были очень медленными. Широкие длинные дороги были сделаны для путешествий на длинные дистанции на высоких скоростях, предполагается, наконец, объяснение, для чего на знаках были нарисованы различные числа. Ученые начинают отличать жилые зоны от индустриальных, понимать способы, которыми могли бы взаимодействовать коммерческие и транспортные инфраструктуры, и т. д. Множество деталей, которые они каталогизировали, оказались не совсем существенными, просто из-за катастроф или требований местной географии. Остается то же самое количество сырых данных, но они больше не представляют из себя головоломку.
Мы можем быть уверены, что прорыв подобного рода позволит нам понять, к чему относятся все детали мозга.
К несчастью, не все верят, что мы можем понять, как работает мозг. Впечатляющее количество людей, включая некоторых нейрофизиологов, верят, что так или иначе мозг и интеллект находятся за пределами объяснимого. А некоторые верят, что даже если мы сможем понять их, будет невозможно построить машину, которая будет работать подобным образом, что интеллект требует человеческого тела, нейронов и, возможно, каких-то новых и непостижимых законов физики. Когда я слышу подобные аргументы, я представляю мудрецов из прошлого, которые выступали против изучения небес или против вскрытия трупов, чтоб увидеть, как работают наши тела. «Не утруждайте себя изучением этого, это не приведет ни к чему хорошему, и даже если вы сможете понять, как это работает, мы ничего не сможем сделать с этими знаниями». Аргументы, подобные этим, ведут нас к направлению философии, называемому функционализмом, нашей последней остановке в краткой истории наших размышлений над мышлением.
Согласно функционализму, интеллект или разум безоговорочно является свойством организации, и по сути неважно, организации чего именно. Разум существует в любой системе, чьи составляющие части имеют правильные причинные отношения друг с другом, но эти части могут быть нейронами, силиконовыми чипами или чем-нибудь еще. Ясно, что эта точка зрения — стандартный выход для любого потенциального проектировщика интеллектуальных машин.
Рассмотрим ситуацию: будет ли игра в шахматы менее реальной, если при игре в нее вместо коней поставить солонки? Ясно, что нет. Солонка функционально эквивалентна «реальному» коню по тому, как она двигается по доске и взаимодействует с другими фигурами, таким образом это будет действительно игра в шахматы, а не просто их симуляция. Или, например, будет ли эта фраза той же самой, если я пройдусь по ней курсором, удаляя каждый символ, потом заново его печатая? Или возьмем пример ближе к сути, рассмотрим тот факт, что каждые несколько лет ваше тело замещает большинство составляющих его атомов. Несмотря на это, вы остаетесь самим собой во всех смыслах, которые касаются вас. Один атом ни чем не хуже другого, если он играет ту же функциональную роль в вашей молекулярной структуре. Та же самая история должна относиться и к мозгу: если какой-то сумасшедший ученый решит заместить каждый ваш нейрон функционально эквивалентным микроскопическим машинным заменителем, вы должны уйти с процедуры, чувствуя себя не менее тем же самым, каким вы были вначале.
Следуя этому принципу, искусственная система, использующая ту же самую функциональную архитектуру, что и интеллектуальный живой мозг, должна быть точно так же интеллектуальной — и не просто с какими то натяжками, а действительно, истинно интеллектуальной.
Сторонники ИИ, коннекционисты и Я — мы все функционалисты, до тех пор, пока мы верим, что по существу нет ничего специального или магического в мозгу, что делает его интеллектуальным. Все мы верим, что мы способны построить интеллектуальные машины как-нибудь и когда-нибудь. Но есть различные интерпретации функционализма. Тогда как я утверждаю, что я вижу центральную неудачу ИИ и коннекционистской парадигмы — ошибочность подхода «ввод-вывод» — есть более ценное высказывание насчет того, почему мы еще не способны разработать интеллектуальную машину. Пока сторонники ИИ принимают то, что я рассматриваю как бескомпромиссное обречение на провал, коннекционисты, с моей точки зрения, в основном всего лишь застенчивы.
ИИ-исследователи спрашивают, «Почему мы, инженеры, должны быть ограничены решениями, на которые наткнулась эволюция?». В принципе, в этом есть свой резон. Биологические системы, подобные мозгу и генетическому аппарату, печально известны своей неэлегантностью. Общей метафорой является машина Руба Голдберга, названная так после «великой депрессии» карикатуристами, которые нарисовали комически сверхсложное приспособление для выполнения тривиальных задач. У разработчиков ПО есть подобный термин, клудж, для обозначения программ, которые написаны без предусмотрительности и наполнены обременительной, ненужной сложностью, часто приводящей к тому, что программа становится непонятной даже программисту, написавшему ее. Исследователи ИИ боятся, что аналогично и мозг — беспорядочный несколько-сот-миллионолетний клудж, битком набитый неэффективным