запустите в него что-то более весомое. За использование концепции квантов для объяснения фотоэлектрического эффекта Эйнштейн был удостоен Нобелевской премии. Его работы ясно показали, что идея представления потока энергии как потока квантов должна восприниматься всерьез. Очень скоро квантовая теория стала основным направлением в теоретической физике. Через четыре года после объяснения фотоэффекта Эйнштейн существенно развил ее и показал: кванты света обладают еще и импульсом, что делает их полноправными частицами. Ученые работали над квантовой теорией еще на протяжении трех десятилетий, пока она не превратилась в стройную теорию, объясняющую процессы, происходящие внутри атомов.
Работы Планка и Эйнштейна показали, что микромир, мир атомов, подчиняется совсем иным законам, чем те, что Ньютон написал для макромира и которые согласуются с нашим повседневным опытом. Законы Ньютона прекрасно годятся для описания больших предметов вроде автомобилей и пушечных ядер, но в мире атомных частиц действуют другие правила — странные и противоречащие общепринятым понятиям. Поведение строительных блоков материи просто невозможно понять без понимания законов квантового мира.
Когда рождалась квантовая физика, ученые еще мало что знали о структуре атома. В модели, предложенной Эрнестом Резерфордом и Нильсом Бором, атомы состояли из твердых ядер, окруженных электронами, которые вращались вокруг ядер по концентрическим орбитам. В 1913 году Бор понял, что квантовая интерпретация движения электронов по орбитам позволяет объяснить длину волны (цвет) света, поглощаемого и излучаемого газообразным водородом. Это была очень специальная работа, но она окончательно убедила физиков, что идея квантов дает ключ к пониманию строения материи.
На протяжении более чем десяти лет работы в области квантовой физики носили фрагментарный и отрывочный характер, а ученым требовалась полная квантовая теория, объясняющая поведение любой частицы в любом атоме или молекуле. Успех принесли четыре года, с 1925-го по 1929-й, четыре года интенсивной работы, завершившиеся созданием “квантовой механики” — раздела квантовой теории, описывающей процессы, происходящие в мире атомов.
Вернер Гейзенберг, 24-летний физик из Геттингенского университета, был первым, кто добился тогда серьезных успехов. В конце мая 1925 года Гейзенберг жестоко страдал от сенной лихорадки. Нужно было срочно уехать — туда, где ничего не росло и не цвело. Отпросившись у своего руководителя Макса Борна в отпуск на две недели, Гейзенберг отправился на Гельголанд, небольшой остров в Северном море, который милостью Божьей был лишен всяческих цветов и трав. Когда он приехал — с жутко распухшим лицом и слезящимися глазами, — хозяйка гостиницы решила, что его избили в драке, и предложила подлечить молодого постояльца. Из окна его номера на втором этаже Гейзенбергу открылся чарующий вид на деревню, песчаные дюны и бескрайнее море.
К этому времени Гейзенберг разочаровался в результатах физиков, бьющихся над проблемами квантовой теории, и решил начать все заново. Единственное, что он использовал в своих расчетах,
Это была блестящая идея
По мере того как работа Гейзенберга продвигалась вперед, стала проясняться механика атома46. Волнуясь, он делал множество ошибок, нервничал. “Я был сильно взволнован, — писал он о своем пребывании на Гельголанде. — У меня было ощущение, что сквозь пелену множества беспорядочных атомных явлений я увидел удивительно красивую картину, и тогда я почувствовал легкое головокружение”. Наконец Гейзенберг завершил первый расчет, выполненный с помощью своей новой (матричной) техники. Случилось это в 3 часа ночи. Слишком возбужденный, чтобы спать, он вышел из дома и побрел к южной оконечности Гельголанда, вскарабкался на скалу, которая торчала над морем, и дождался восхода солнца.
Когда Гейзенберг вернулся в Геттинген, Макс Борн просмотрел его математические выкладки и понял, что теория верна. Вскоре они втроем (третьим стал молодой теоретик Паскуаль Иордан) доработали теорию, превратив ее в то, что потом стало известно как матричная механика. Называлась она так потому, что используемые термины записывались в виде таблиц или матриц.
Работа Гейзенберга была первым настоящим вариантом квантовой механики, а вскоре появился на свет и второй. В преддверии Рождества 1925 года австрийский физик Эрвин Шрёдингер, тогда работавший в Университете Цюриха, снял на несколько недель живописный заснеженный домик в Австрийских Альпах. Там он начал работать над собственной квантовой теорией. Шрёдингер, как всегда, пригласил с собой в путешествие свою старинную подругу, оставив жену Анни дома47. Анни была не из тех, кто любит жаловаться, да и Шрёдингер для нее всегда был выше критики. Кроме того, у нее тоже был любовник — ближайший друг и коллега мужа по университету математик Герман Вейль.
Шрёдингер использовал совершенно иной подход, чем Гейзенберг. Его отправной точкой была идея, выдвинутая годом ранее французским физиком Луи де Бройлем, который утверждал, что электроны ведут себя как волны48. Шрёдингер провел в трудах все рождественские каникулы — каждый шаг вперед давался ох как нелегко! 27 декабря он написал своему другу мюнхенскому физику Вилли Вину, лауреату Нобелевской премии 1911 года: “На данный момент я борюсь с новой атомной теорией. Если бы я знал лучше математику! Однако я настроен весьма оптимистически в отношении этой штуки и рассчитываю, что, если только... смогу справиться с ней, будет очень красиво”.
Ко времени возвращения в Цюрих Шрёдингер превратил расплывчатую концепцию де Бройля в новую версию квантовой механики. Вместо непонятных гейзенберговских матриц Шрёдингер в своей теории использовал известное физикам уравнение, очень похожее на волновое. Впервые ученые получили точную квантовую формулу, которую они могли бы использовать для описания частиц в любом атоме или молекуле. (Кем бы ни была спутница Шрёдингера в то Рождество, трудно удержаться и не поразмышлять, на такое ли романтическое приключение она рассчитывала...)
Появление двух версий квантовой механики привело к тому, что новая эра в физике началась некрасиво49. Между Гейзенбергом и Шрёдингером всегда существовала неприязнь. Увидев матричную механику, Шрёдингер сказал, что ее вид “обескуражил, если не отвратил его”. Оценка Гейзенбергом теории Шрёдингера, известной под названием “волновая механика”, была не более лестной: “Чем больше я думаю о ней... тем более отталкивающей ее нахожу”. Теории раскололи физическое сообщество на два враждующих лагеря, причем без серьезной на то причины. Выяснилось, что, хотя теории выглядели на бумаге очень разными, по существу они различались мало. Математик может вывести одну из другой. Судьба оказалась более благосклонной к теории Шрёдингера, и она была принята большинством физиков — не в последнюю очередь потому, что математический аппарат, использованный в ней, был им уже хорошо знаком.
При всей своей красоте уравнение Шрёдингера имело существенный недостаток. Казалось, оно не согласуется со специальной теорией относительности Эйнштейна, которая совершила революцию в умах ученых в 1905 году. Недостаток был серьезным: если использовать уравнение Шрёдингера для описания частиц с очень большими энергиями, движущимися со скоростью, близкой к скорости света, результаты будут заведомой чушью.
Объединение квантовой механики с теорией относительности считается одним из наиболее важных достижений физики XX века. Эту заключительную высоту взял Поль Дирак, сын эмигранта из Швейцарии,