воспринимаю это как продолжение долгого приключения. В какой-то момент с помощью нашей машины мы скажем решающее слово”.

Существует одна интересная возможность — после столь долгого соревнования, имея в виду предстоящее длительное отключение
LHC
в конце 2011 года, ученые могут объединить данные, полученные на европейском коллайдере, с теми, что добыты в Фермилабе на “Теватроне”. Если на обеих машинах к тому времени найдут
свидетельства
существования бозона Хиггса, они вместе могут оказаться достаточными для объявления об открытии. Тогда европейский и американский ускорители закончат охоту на частицы Хиггса и пересекут финишную черту одновременно.

Однако в науке существуют гораздо более важные вещи, чем победа в гонке за открытием, и отчего у физиков действительно захватывает дух, так это от новостей о природе частиц Хиггса. Большинство физиков, с которыми я говорил, очень надеются, что, когда (и если) бозон Хиггса будет найден, он окажется таким, каким его видит теория суперсимметрии, предсказывающая существование тяжелых и невидимых партнеров у всех известных нам частиц. Суперсимметричная частица Хиггса может открыть ученым дверь в новую физическую реальность и приблизить их на один большой шаг к единой теории, описывающей все частицы и силы природы.

Простейшая возможность (а этого достаточно, чтобы в представлениях некоторых физиков сделать ее самой вероятной) состоит в том, что ученые обнаружат одну незаряженную частицу Хиггса, которая плотно уляжется в Стандартную модель как последний кусочек пазла. Это помогло бы разгадать тайну происхождения массы и развязать последний узел, оставшийся в Стандартной модели. Но тогда физики окажутся в очень затруднительном положении, поскольку им известно, что Стандартная модель не описывает всего многообразия явлений, происходящих во Вселенной. Например, она ничего не говорит о темной материи или гравитации, а ученые отчаянно хотят, чтобы бозон Хиггса указал путь к пониманию этих и других тайн природы.

В одном из наших разговоров со Стивеном Вайнбергом (когда я приезжал к нему в Университет Остина, штат Техас) он посетовал, что физика элементарных частиц оказалась в ненормальной ситуации: теоретические идеи ушли намного вперед в объяснении того, что экспериментаторы лишь надеются увидеть в своих экспериментах в будущем, и в этом нет ничьей вины. Бозон Хиггса может подсказать выход из тупика, но — не обязательно. “Открытие единственной нейтральной частицы Хиггса не выведет нас из депрессии, а наоборот, еще более усилит наше подавленное состояние, — сказал он. — Мы обнаружим только то, что ожидали увидеть, и не получим ключа к пониманию нового. Для нас было бы лучше, если бы существовало несколько видов частиц Хиггса или их не было вовсе”.

Перспектива остаться с пустыми руками по окончании охоты на бозон Хиггса очень реальна, по крайней мере, так думают некоторые ученые. В декабре 2009 года, всего через несколько дней после того, как на
LHC
увидели первые пробные столкновения, Тини Вельтман, который разделил в 1970-х годах Нобелевскую премию с Герардом т’ Хоофтом за работы, связанные с механизмом Хиггса, выступил на семинаре в ЦЕРНе. Вельтман высказал предположение, что частицы Хиггса просто могут не существовать и что все частицы обретают массу другим способом192. Если они, эти неуловимые бозоны, все-таки существуют, то вполне могут быть невидимыми. Это означает, что, едва родившись, они сразу распадаются на такие частицы, которые в современных детекторах увидеть нельзя. Вельтман закончил доклад словами: “Если уже в ближайшем будущем бозон Хиггса найден не будет, то он либо не существует, либо невидим. Сейчас мне кажется более вероятной перспектива, которую можно сформулировать кратко так: “Хиггса не существует”.

Вельтман не единственный, кто сомневается в существовании частицы Хиггса в том виде, в котором большинство ученых склонны ее представлять. В 2009 году два физика, Дэвид Станкато и Джон Тернинг из Калифорнийского университета в Дэвисе, заявили, что бозон Хиггса может быть вовсе не частицей, а тем, что они назвали “нечастица” или “Нехиггс”193.

Эти нечастицы последнее время вызывают огромный интерес. У них много общего с обычными частицами, но и ряд особенностей. Нормальные частицы имеют четко определенные массы, а масса нечастиц размыта и неопределенна. Этот факт сам по себе ставит успех охоты на “Нехиггса” под вопрос. Еще хуже то, считают Станкато и Тернинг, что, если “Нехиггс” родится внутри
LHC
,
его почти невозможно будет обнаружить с помощью детекторов.

Вернувшись в свой кабинет, Джон Эллис объясняет, на какие важнейшие вопросы придется ответить физикам, когда они найдут частицы Хиггса. Так, ученые пока не знают, частицы Хиггса — элементарные или состоят из более мелких частиц. Если они состоят из других частиц, то те могут быть уже известными или совершенно новыми частицами. Скорее всего, поиск ответов займет у физиков многие годы.

Перед моим приездом ночью на Женеву выпал снег, и поля вокруг ЦЕРНа припорошило белой пудрой. Сцена была подготовлена для любимой Эллисом аллегории поля Хиггса. “Представьте себе бесконечное снежное поле, которое заполняет всю Вселенную, — говорит он. — Некоторые частицы могут бежать по снегу, будто на лыжах. Это фотоны — безмассовые частицы, которые не обращают внимания на поле Хиггса и мчатся по нему со скоростью света. Другие частицы, например электрон, ведут себя так, словно у них на ногах снегоступы. Они слегка проваливаются в снег, их движение замедляется, и таким образом они приобретают небольшую массу. Но в природе есть частицы, к примеру истинные
(
top
)
кварки, которые вообще не обуты. Они проваливаются глубоко в снег и в процессе движения становятся сверхтяжелыми. Поиск бозона Хиггса эквивалентен сбору снежинок с этого космического снежного поля и изучению их под микроскопом”.

Возможно, самое интригующее тут — это почему некоторые частицы увязают в поле Хиггса больше других. Тут — суть вопроса о массе. Наиболее тяжелый из кварков — истинный кварк — примерно в 400 000 раз тяжелее электрона. Поле Хиггса дает кваркам и электронам возможность обрести массу, но ничего не говорит о том, почему они получают именно такие массы. Почему некоторые частицы существенно массивее, чем другие? “К сожалению, — говорит Эллис, — у нас нет теории, объясняющей, почему некоторые частицы носят снегоступы, а другие ходят по снегу босиком”.

Покойный британский писатель Рональд У. Кларк в известной биографии “Эйнштейн: Жизнь и Времена”, опубликованной в 1972 году, рассказывает историю о необычном тосте, произнесенном некогда в Кавендишской лаборатории Кембриджского университета. Заведующим лабораторией в то время был Дж. Дж. Томсон, получивший Нобелевскую премию за открытие электрона в 1897 году. Тост произнес один из сотрудников Томсона, выдающийся физик Эдвард Андраде. Он поднял бокал “за бесполезный электрон”, добавив: “который еще долго будет оставаться таковым!”.

Никто тогда не знал, что электрон готовится преобразить мир. Когда Томсон рассказывал про вновь открытые частицы, народ слушал его в недоумении. Все думали, что почтенный ученый дурит им голову: идея частиц размером меньше атома казалась абсурдом! Даже те, кто верил Томсону, с трудом тогда представляли, какую пользу на самом деле можно извлечь из его открытия.

Такие истории происходят в науке очень

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату