каким образом другие частицы получают свои массы, но о массе самой частицы Хиггса она ничего не говорит. Ученые могли отправиться на ее поиски, но они не знали, с чего начать.

А что же с полем Хиггса? Ведь физики не могут просто выйти из лаборатории и отправиться на его поиски. Оно, это поле, запрятано глубоко в вакууме и пронизывает все пространство. Особенно трудно его обнаружить потому, что оно не меняется от места к месту81. Изучение гравитационного поля — задачка попроще, поскольку в некоторых местах гравитация сильнее, в некоторых — слабее. Поднимитесь на вершину Эвереста — сила тяжести там заметно меньше, чем на уровне моря, ведь на Эвересте вы дальше от центра Земли. Теоретически ученые могут вызвать изменения в поле Хиггса, но для этого им пришлось бы нагреть Вселенную до температуры выше миллиона миллиардов (квадрильона) градусов Цельсия. Даже если эта задача была бы им по плечу, не хотелось бы, чтобы у них это получилось: изменение поля Хиггса приведет к изменению размеров атомов и сделает нашу материю нестабильной82.

В 1964 году, после опубликования первых статей о поле Хиггса, Питер приступил к обобщению уже построенной теории. Он проделал расчеты и вставил в них параметры субатомных частиц, рассчитывая, что рано или поздно одно с другим сойдется и выстроится картина, из которой станет видно, как механизм Хиггса приводит к появлению массы у одних частиц, а других оставляет без нее. Однако его постигло разочарование. Шли месяцы, а заметного продвижения все не было. Как Хиггс ни бился, цель по-прежнему оставалась далеко.

Не лучше шли дела и в Брюсселе. У Роберта Браута и Франсуа Энглера тоже никак не получалось объяснить, почему некоторые частицы в природе обладают массой, а другие

нет. Кончилось тем, что они поручили эту задачу молодой аспирантке, но и у той ничего не вышло. Итак, в Европе работа над хиггсовским механизмом была на грани провала.

А между тем Джерри Гуральник вернулся в Америку. Дела у него шли плохо. Он боялся, что вообще не сможет заниматься наукой. Сокрушительный разгром, которому Гейзенберг подверг его работу в Фельдафинге, подорвал его веру в себя и в теорию, над которой он работал вместе с Диком Хагеном и Томом Кибблом. Позже Гуральник мне говорил, что эта история повергла его в глубокую депрессию, — он чувствовал себя так, словно его жестоко избили.

Гуральнику тогда пришлось забыть о теории происхождения массы. Он получил место в Роче стерском университете штата Нью-Йорк, где работал и Дик Хаген. Спустя год его пригласил заведующий кафедрой физики высоких энергий Роберт Маршак, который дал понять Гуральнику, что если он хочет заниматься физикой, то должен бросить размышлять о нарушении симметрии. Много лет спустя, в 1983 году, Маршак публично извинился перед Гуральником. Выступая на совещании в Шелтер-Айленде, в Нью-Йорке, он сказал, что его тогдашние рекомендации, вероятно, будут стоить Гуральнику Нобелевской премии83.

Здание Роберт-Ли-Мур-Холл, входящее в комплекс Техасского университета, — не самое красивое в Остине. Если посмотреть на него со стороны кампуса, оно выглядит как огромная уродливая коробка из-под обуви с щелями-окнами и пристройкой сбоку. Изнутри кажется, что оно специально построено так, чтобы запутать людей или, по крайней мере, отбить охоту у идиотов, попавших сюда, идти дальше. Первый этаж — на самом деле четвертый, то есть, чтобы попасть на девятый, нужно подняться в лифте на пять этажей наверх. И именно на девятом этаже находится офис одного из самых уважаемых физиков в мире — Стивена Вайнберга, к которому я и направляюсь.

Стивен Вайнберг руководит отделением теоретической физики в Университете Остина. Он приезжает на работу в костюме и шляпе-панаме и прогуливается, опираясь на палку, которой пользуется с тех пор, как его колено поразил артрит. Вайнберг встречает меня в коридоре дружеской улыбкой, распахивает дверь в свой кабинет и садится перед вазочкой с фисташками. История, которую я хочу услышать, началась более сорока лет назад...

Шел 1967 год. Вайнбергу было 34 года, и он работал в Массачусетском технологическом институте в Кембридже, штат Массачусетс. Чтобы его жена смогла учиться на юридическом факультете Гарвардского университета, он решил переехать в Бостон, для чего взял отпуск в своем университете в Беркли Калифорния, где занимал пост профессора физики Вайнбергу было непросто

он с женой и маленькой дочкой только что въехал в свой второй съемный дом, девочке была нужна няня, и ко всему прочему его работа застопорилась.

Вайнберг всю осень не расставался с карандашом и бумагой, выписывая уравнения и стараясь понять, что в них можно увидеть. Он пытался с помощью механизма Хиггса объяснить некоторые тонкие различия между протонами и нейтронами

частицами атомных ядер. А когда увидел, что из его уравнений следует наличие нулевой массы у известных в ядерной физике частиц — ро- мезонов, — то понял, что пришло время отказаться от этих уравнений. Дело в том, что физики уже знали, что масса у ро-мезонов ненулевая. “Это привело меня в жуткое уныние, — рассказывал он. — Как заниматься теорией, если понимаешь, что она приводит к неправильным результатам!

Вайнберг описал это свое разочарование позже, в 1997 году, в статье для ныне несуществующего глянцевого журнала “George”, одним из основателей которого был Джон Кеннеди-младший: “Противоречия такого рода трудно разрешить, сидя за столом и делая расчеты. — вы просто будете ходить по округу. Иногда полезно оставить задачу повариться в подсознании, а в это время выйти из дома, посидеть на скамейке в парке и посмотреть, как ваша дочь играет в песочнице”84.

Однажды несколько недель спустя, в середине сентября Вайнберг ехал в офис в Массачусетском технологическом институте в своем красном спорткаре “камаро”, и вдруг его осенило: неправильной была не сама его теория, а только ее интерпретация! Уравнения, которые он вывел, не описывали тонкие различия между протонами и нейтронами, зато прекрасно описывали так называемую четвертую силу, существующую в природе. “Я дал правильный ответ на неправильный вопрос”, — рассказывал он.

Четвертая сила природы — наверное, самая малоизвестная из всех. Большинство людей знакомы с силой тяжести и электромагнитной силой. Электромагнитное взаимодействие, например, используется в электронных приборах, а еще заставляет волосы вставать дыбом в грозу. Третья сила — сила, участвующая в сильном взаимодействии, она в 137 раз сильнее, чем электромагнитная, и ее дело — удерживать частицы внутри атомных ядер. А вот что такое четвертая сила — не очень ясно. Она отвечает за слабое взаимодействие и за некоторые виды радиоактивного распада. Внутри Солнца слабое взаимодействие превращает водород в дейтерий (тяжелый водород) — сырье для термоядерных реакций, благодаря которым наша звезда светится.

Слабые силы действуют лишь на малых расстояниях. В то время как радиус действия электромагнитной силы огромен, слабая сила ощущается только при приближении на расстояние, равное одной стомиллионной доли нанометра, а это одна сотая диаметра атомного ядра, расстояние столь малое, что физики считают: слабая сила включается лишь при непосредственном контакте частиц.

Приехав в свой офис в Массачусетском технологическом институте, Вайнберг стал набрасывать черновой вариант теории. Вскоре он понял, что безмассовая частица, которая разрушала его прежние построения, была на самом деле фотоном

действительно безмассовой частицей, квантом света и переносчиком электромагнитного взаимодействия. Это было основным выводом и означало, что уравнения Вайнберга в рамках единой обобщающей теории описывают и слабые и электромагнитные силы. Вайнберг, сам не осознавая того, объединил две силы природы. С тех пор как в XIX веке Максвелл объединил электричество и магнетизм, подобное объединение было сделано впервые.

В работе Вайнберга описывалось взаимодействие, которое теперь ученые называют электрослабым. Его расчеты показали, что в начале существования Вселенной электромагнитные и слабые силы переплетались. Затем, по мере расширения и охлаждения Вселенной, они разделились на две отдельные силы, которые мы и наблюдаем в настоящее время. Прорыв, сделанный Вайнбергом, был тем более значительным, что его теория включала в себя механизм Хиггса! Именно поле Хиггса “растащило” со временем электромагнитную и слабую силы.

Объединив электричество и магнетизм в единую теорию электромагнетизма, Максвелл предсказал, что кроме видимого света существуют еще и другие электромагнитные волны. Это намного облегчило жизнь

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату