множестве является искаженным. В любом случае нам необходимо найти реальность в непрерывном множестве, которая соответствует физическому опыту, постигаемому из дискретного множества.

Термин «трансфинитность» был использован здесь в том же смысле, что и в публикациях 1871-1883 гг. Георга Кантора (1845-1918) по вопросу «трансфинитного упорядочивания»; особенно в его работе 1883 г. «Основы общего учения о многообразиях» (Grundlageri). Базисом этой работы Кантора стали приемы, разработанные Риманом для тригонометрических рядов и связанные с этим работы учителя Кантора Карла Вейерштрасса (1815-1897). Методы, предложенные Вейерштрассом, сформировали научный подход Кантора к Фурье-анализу. «Трансфинитность», как понимал это Кантор, подразумевает и вытекает из строго геометрического подхода, согласующегося с подходом Римана [8]. Таким образом, использование термина «онтологическая трансфинитность» является вполне подходящим.

Термин «онтологическая трансфинитность» появляется, в основном, из-за значительной разницы в методе, принятом Гауссом и Риманом, с одной стороны, и геттингенским профессором Феликсом Клейном (1849-1925) и др., с другой. Хотя Кляйн настаивал на том, что современное естествознание утратило те методы научной работы, которые применялись Карлом Гауссом, и приложил все усилия для возрождения этого исчезающего знания, в действительности слабые места в работе великого Давида Гильберта (1862-1943) показали, что ему не удалось постичь геометрические принципы, которые использовали Гаусс, Дирихле, Риман и др. Точно так же основополагающая работа Макса Планка (1858-1947), посвященная

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату